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ABSTRACT 

Degradation product toxicity is a critical quality issue for a small group of useful 

drug products—e.g. lidocaine, isoniazid, chlorhexidine, gabapentin.   In the traditional risk 

assessment approaches, a no-observed-adverse-effect level (NOAEL) derived from animal 

data is determined with the use of generic (and arbitrary) uncertainty factors to obtain an 

acceptable daily intake. The effects of compound-specific biological complexities and 

pharmacokinetics are typically not part of the risk calculations. The selection of uncertainty 

factors that account for interspecies or intraspecies difference concerning biokinetics and 

biodynamics has also generally failed to consider chemical-specific mechanism 

information or pharmacokinetics data.  The use of combining in-vitro biopharmaceutical 

characterization methods and physiologically-based pharmacokinetic modeling has 

undergone extensive study and validation for predicting clinical drug blood level time 

profiles.  The rationale for the proposed research is that a PBPK modeling utilizing rat to 

human scaling for target tissue toxicity in combination with the Monte Carlo method for 

estimating human target exposure distributions provides a rational basis for assessing drug 

stability safety issues for drug substances that potentially degrade to toxic compounds.   

PBPK models for rats and humans were developed to simulate drug exposure time 

profiles after oral administration of model compounds including aniline, p-chloroaniline, 

2,6-xylidine, o-toluidine and p-aminophenol. The PBPK models were parameterized using 

a combination of literature values, computational models and standard in vitro 

experiments. Microsomal and hepatocyte metabolism studies were used to estimate the 

metabolic constants, and ultrafiltration was used to measure protein binding. Intestinal 

permeability was predicted using a set of related compound data to correlate measured 

Caco-2 permeability with molecular descriptors by multivariate regression. Sensitivity 

analyses were conducted to evaluate the impact of PBPK model parameters on plasma 

level predictions. To evaluate patient population effects on exposure profiles, the PBPK 

model parameters were varied in meaningful ways using Monte Carlo methods. Based on 
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population PBPK models, distributions of target tissue exposure in rats and humans were 

simulated and compared to derive human safe dose. 

As results, rat PBPK model-predicted aniline concentration time profiles were in 

reasonable agreement with published profiles. Distributions of target tissue exposure in rats 

and humans were generated and compared based on a criterion. A human reference dose 

was then selected at a value of 1% criteria. This approach was compared to traditional risk 

assessment calculations. In conclusion, the PBPK modeling approach resulted in drug 

degradation product risk specifications that were less stringent than those estimated by 

conventional risk assessment approach. The PBPK modeling approach provides a rational 

basis for drug instability risk assessment by focusing on target tissue exposure and 

leveraging physiological, biochemical, biophysical knowledge of compounds and species. 
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PUBLIC ABSTRACT 

Patient safety risk due to toxic degradation products is a potentially critical quality 

issue for a small group of useful drug products (e.g. lidocaine, isoniazid, chlorhexidine, 

gabapentin).   In recent years toxicity of unwanted components that remain with the active 

pharmaceutical ingredients, or arise during the manufacturing process and/or storage of the 

drug substance have received considerable attention industrial and regulatory scientists.  

Although the time course of potential toxic degradants in body will strongly affect product 

safety, these data are frequently unavailable in animal and impossible to safely obtain in 

human.  The objective of this study is to incorporate the use of physiologically-based 

pharmacokinetic (PBPK) models in rats and humans for the development of rational 

degradant risk assessment procedures using a series of model drug degradants (substituted 

anilines). The PBPK models were parameterized using a combination of literature values, 

computational methods and standard experiments. Microsomal and hepatocyte metabolism 

studies were used to estimate the metabolic constants, and ultrafiltration was used to 

measure protein binding. The impact of the uncertainties and variability in parameter 

values on model predictions were analyzed. Human safe doses for model compounds were 

selected based on the comparison between predicted rat target tissue exposure at critical 

dose and human exposure at a series of predetermined doses. This approach was compared 

to traditional risk assessment calculations.  

In conclusion, the PBPK modeling approach provides a rational basis for drug 

instability risk assessment by focusing on target tissue exposure and leveraging 

physiological, biochemical, biophysical knowledge of compounds and species.



www.manaraa.com

ix  

TABLE OF CONTENTS 
LIST OF TABLES .......................................................................................................... x 

LIST OF FIGURES ...................................................................................................... xiii 

CHAPTER 1. INTRODUCTION ............................................................................... 1 

1.1. Potential risks of drug instability........................................................................ 1 

1.2. Toxicity-based risk assessment .......................................................................... 6 

1.3. Project overview and research objectives  ......................................................... 14 

1.4. Whole body physiologically - based pharmacokinetic models ........................... 15 

1.5. Model compounds ........................................................................................... 25 

CHAPTER 1 LITERATURE CITED............................................................................. 33 

CHAPTER 2. PBPK MODEL PARAMETERIZATION........................................... 45 

2.1. Introduction .................................................................................................... 45 

2.2. Materials and Methods .................................................................................... 54 

2.3. Results ............................................................................................................ 70 

2.4. Discussion .....................................................................................................109 

2.5. Conclusion .....................................................................................................112 

CHAPTER 2 LITERATURE CITED............................................................................114 

CHAPTER 3. DEVELOPMENT OF RAT AND HUMAN PBPK MODELS AND 
PARAMETER SENSITIVITY ANALYSIS..................................................................123 

3.1. Introduction ...................................................................................................123 

3.2. Methods.........................................................................................................128 

3.3. Results ...........................................................................................................133 

3.4. Discussion .....................................................................................................148 

3.5. Conclusion .....................................................................................................149 

CHAPTER 3 LITERATURE CITED............................................................................150 

CHAPTER 4. PBPK-BASED METHOD FOR SAFETY ASSESSMENT OF DRUG 

DEGRADATION PRODUCTS ....................................................................................153 

4.1. Introduction ...................................................................................................153 

4.2. Methods.........................................................................................................156 

4.3. Results ...........................................................................................................158 

4.4. Discussion .....................................................................................................167 

4.5. Conclusions ...................................................................................................169 

CHAPTER 4 LITERATURE CITED............................................................................170 

APPENDIX A 171 

APPENDIX B 172 

 



www.manaraa.com

x  

LIST OF TABLES 

Table 1.1- Thresholds for degradation products in new drug products  ............................... 3 

Table 1.1- Continued....................................................................................................... 4 

Table 1.2- Example of reporting, identifying and qualifying degradation products ............. 5 

Table 1.3- Model drug degradant and parent API ........................................................... 25 

Table 2.1- Physiological parameters for rats ................................................................... 55 

Table 2.2- Organ weight (percent of body weight - % BW) and blood flow rate (percent of 
cardiac output - % CO) for human males and females..................................................... 56 

Table 2.3- Fractional volume of vascular and interstitial space in various organs of 

mammals (37) ............................................................................................................... 57 

Table 2.4-Mean value of rat tissue composition parameters for the mechanistic equations 
used to predict Kpu values ............................................................................................. 58 

Table 2.5- pKa and logPo/w of model compounds............................................................ 59 

Table 2.6- Mobile phase for each model compound ........................................................ 63 

Table 2.7- Code of molecular descriptors considered in the Caco-2 cell model ................ 67 

Table 2.8- Molecular descriptors (obtained from MOE software) and Caco-2 permeabilities 
of 22 aromatic amines ................................................................................................... 68 

Table 2.9- Reported human logPeff and Caco-2 cell permeability (72) ............................. 69 

Table 2.9- Continued..................................................................................................... 70 

Table 2.10- Tissue-to-plasma partition coefficients predicted using the Eq. 2.7 from model 
of Rodgers and Rowland ............................................................................................... 71 

Table 2.11- Chromatographic parameters for aniline obtained from PC1000 software ..... 72 

Table 2.12- Linearity testing of HPLC analytical system for aniline ................................ 73 

Table 2.13- System suitability parameters for model compounds  .................................... 74 

Table 2.14- Linearity testing of HPLC analytical system for p-chloroaniline ................... 75 

Table 2.15- Linearity testing of HPLC analytical system for 2,6-dimethylaniline............. 75 

Table 2.16- Linearity testing of HPLC analytical system for o-toluidine.......................... 75 

Table 2.17- Linearity testing of HPLC analytical system for p-aminophenol ................... 76 

file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464369
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464369
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464373
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464373


www.manaraa.com

xi  

Table 2.18- Estimation of initial rate of substrate loss (slope) for aniline by linear 
regression ..................................................................................................................... 82 

Table 2.19- Estimation of initial rate of substrate loss (slope) for p-chloroaniline by linear 
regression ..................................................................................................................... 83 

Table 2.20- Estimation of initial rate of substrate loss (slope) for 2,6-dimethylaniline by 

linear regression............................................................................................................ 84 

Table 2.21- Estimation of initial rate of substrate loss (slope) for o-toluidine by linear 
regression ..................................................................................................................... 85 

Table 2.22- Estimation of initial rate of substrate loss (slope) for p-aminophenol by linear 

regression ..................................................................................................................... 86 

Table 2.23- Summary for Vmax and Km values predicted from nonlinear regression.  ......... 87 

Table 2.24- Metabolic constants of model compounds obtained from fitting Michaelis-
Menten equation to all depletion curves via MCMC sampling.  ....................................... 90 

Table 2.25- Protein unbound fraction of aniline in microsomes and plasma measured using 
ultrafiltration................................................................................................................103 

Table 2.26- Protein unbound fraction of p-chloroaniline in microsomes and plasma 
measured using ultrafiltration .......................................................................................103 

Table 2.27- Protein unbound fraction of 2,6-dimethylaniline in microsomes and plasma 
measured using ultrafiltration .......................................................................................104 

Table 2.28- Protein fraction unbound of o-toluidine in microsomes and plasma measured 
using ultrafiltration.......................................................................................................104 

Table 2.29-Protein unbound fraction of p-aminophenol in microsomes and plasma 
measured using ultrafiltration .......................................................................................104 

Table 2.30- Parameter estimates of the selected model for Caco-2 cell permeability 
prediction ....................................................................................................................105 

Table 2.31- Observed Caco-2 permeabilities from Hou et al (20) and predicted values of 5 
test compounds using model selected. ...........................................................................106 

Table 2.32- Molecular descriptors for drug degradants obtained from MOE software .....106 

Table 2.33- Physical properties from MOE and predicted Caco-2 values using selected 

model for drug degradants  ............................................................................................107 

Table 2.34- In vitro / in vivo permeability correlation ....................................................108 

Table 2.35-Conversion of in vitro permeabilities to in vivo human and rat permeabilities of 
model degradants using correlation below between human and rat intestinal permeability 



www.manaraa.com

xii  

from Fagerholm et al (73).............................................................................................108 

Table 3.1- Physiological parameters for scaling in vitro drug metabolism data ...............131 

Table 3.2- Coefficients of variation of measured parameters ..........................................140 

Table 3.3- Coefficients of variation of physiological parameters in rats and humans  .......141 

Table 3.4- Coefficients of variation of physicochemical and other selected parameters ...141 

Table 4.1- The critical doses for model compounds from literature ................................157 

Table 4.2- Probability distribution of AUC in target organ of toxicity at critical dose  .....159 

Table 4.3- The values of PROB for male and female populations after single oral dose of 
aniline .........................................................................................................................161 

Table 4.4- The values of PROB for male and female populations after single oral dose of p-
chloroaniline ................................................................................................................162 

Table 4.5- The values of PROB for male and female populations after single oral dose of 
2,6-dimethylaniline  ......................................................................................................163 

Table 4.6- The values of PROB for male and female populations after single oral dose of o-
toluidine ......................................................................................................................164 

Table 4.7- The values of PROB for male and female populations after single oral dose of p-
aminophenol ................................................................................................................165 

Table 4.8- The human safe doses obtained by the application of PBPK in risk assessment 
accounting for uncertainty and variability .....................................................................166 

Table 4.9- Human reference doses of model compounds calculated by tradition risk 
assessment approach ....................................................................................................167 

 

 

 

 

 

 

 

 



www.manaraa.com

xiii  

LIST OF FIGURES 

Figure 1.1- Hypothetical dose response curve................................................................... 7 

Figure 1.2- Linear low-dose extrapolation approach from dose–response model ................ 8 

Figure 1.3- Conceptual representation of a Whole Body PBPK Model.  ........................... 16 

Figure 1.4- Illustration of uncertainty and variability in pharmacokinetic population 

models..  ........................................................................................................................ 24 

Figure 1.5- Spleen weights for rats in a 13-week gavage study of p-chloroaniline 
hydrochloride................................................................................................................ 27 

Figure 1.6- Effect of p-aminophenol on blood urea nitrogen in Fisher F344 rats. ............. 28 

Figure 1.7- Metabolic scheme of aniline in rat liver  ........................................................ 29 

Figure 1.8- Blood concentration time profiles of aniline administered intraperitoneally in 
rats ............................................................................................................................... 31 

Figure 2.1- Absorbance spectrum of aniline  ................................................................... 71 

Figure 2.2- Sample chromatogram  of aniline and its metabolites. ................................... 72 

Figure 2.3- Standard curve for aniline from microsomal study using 150 µM aniline ....... 73 

Figure 2.4- Chromatogram of p-chloroaniline from microsomal study for metabolic 
parameters determination .............................................................................................. 74 

Figure 2.5- Chromatogram of 2,6-dimethylaniline from microsomal study for metabolic 
parameters determination .............................................................................................. 74 

Figure 2.6- Chromatogram of o-toluidine from microsomal study for metabolic parameters 
determination ................................................................................................................ 74 

Figure 2.7- Chromatogram of p-aminophenol from hepatocyte study for metabolic 
parameters determination .............................................................................................. 75 

Figure 2.8- Aniline depletion plots from rat liver microsomal studies. ............................. 77 

Figure 2.9- p-Chloroaniline depletion plots from rat liver microsomal studies. ................ 78 

Figure 2.10- 2,6-dimethylaniline depletion plots from rat liver microsomal studies. ......... 79 

Figure 2.11- o-toluidine depletion plots from rat liver microsomal studies. ...................... 80 

Figure 2.12- Depletion plots of PAP using hepatocyte. ................................................... 81 

Figure 2.13- Initial metabolic rates versus substrate concentrations..  ............................... 87 

file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464514
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464515
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464516
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464516
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464519
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464521
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464522
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464523
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464524
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464524
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464527
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464527
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464533


www.manaraa.com

xiv  

Figure 2.14- Standard errors of the slopes versus initial substrate concentrations. ............ 89 

Figure 2.15- The history plots of MCMC chain for Vmax, Km of aniline indicates the 
convergence by no apparent trends.  ............................................................................... 90 

Figure 2.16- Vmax and Km posterior distributions and their pair plots for aniline, PCA, 2,6-
DMA, o-TOL and PAP, respectively.  ............................................................................ 92 

Figure 2.17- Distribution of initial metabolic reaction rates of aniline, PCA; 2,6-DMA, o-
TOL and PAP. .............................................................................................................. 93 

Figure 2.18- Aniline depletion data from rat liver microsome studies (points) and 95% 
confidence interval of model predicted curves simulated by the MCMC sampling using 

Vmax and Km values obtained from their posterior distributions. ....................................... 94 

Figure 2.19- p-Chloroaniline depletion data from rat liver microsome studies (points) and 
95% confidence interval of model predicted curves simulated by the MCMC sampling 
using Vmax and Km values obtained from their posterior distributions. ............................. 95 

Figure 2.20- p-Chloroaniline depletion data from rat liver microsome studies (points) and 
95% confidence interval of model predicted curves simulated by the MCMC sampling 
using Vmax and Km values obtained from their posterior distributions - continued ............ 96 

Figure 2.21- 2,6-Dimethylaniline depletion data from rat liver microsome studies (points) 

and 95% confidence interval of model predicted curves simulated by the MCMC sampling 
using Vmax and Km values obtained from their posterior distributions. ............................. 97 

Figure 2.22- 2,6-Dimethylaniline depletion data from rat liver microsome studies (points) 
and 95% confidence interval of model predicted curves simulated by the MCMC sampling 

using Vmax and Km values obtained from their posterior distributions - continued ............ 98 

Figure 2.23- o-Toluidine depletion data from rat liver microsome studies (points) and 95% 
confidence interval of model predicted curves simulated by the MCMC sampling using 
Vmax and Km values obtained from their posterior distributions.  ...................................... 99 

Figure 2.24- o-Toluidine depletion data from rat liver microsome studies (points) and 95% 
confidence interval of model predicted curves simulated by the MCMC sampling using 
Vmax and Km values obtained from their posterior distributions – continued. ...................100 

Figure 2.25- p-Aminophenol depletion data from rat liver microsome studies (points) and 

95% confidence interval of model predicted curves simulated by the MCMC sampling 
using Vmax and Km values obtained from their posterior distributions. ............................101 

Figure 2.26- p-Aminophenol depletion data from rat liver microsome studies (points)  and 
95% confidence interval of model predicted curves simulated by the MCMC sampling 

using Vmax and Km values obtained from their posterior distributions – continued. ..........102 

Figure 2.27- Pair plot between predicted apparent permeability (logPapp) from model 
selected and experimental values obtained from Hou et al (20). .....................................105 

file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464534
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464535
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464535
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464536
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464536
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464537
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464537
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464538
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464538
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464538
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464539
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464539
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464539
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464540
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464540
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464540
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464541
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464541
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464541
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464542
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464542
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464542
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464543
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464543
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464543
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464544
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464544
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464544
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464545
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464545
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464545
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464546
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464546
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464546
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464547
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464547


www.manaraa.com

xv  

Figure 2.28- Correlation of Caco-2 permeability and in vivo human permeability using data 
from Alsenz (67) ..........................................................................................................107 

Figure 3.1- Conceptual representation of a Whole Body PBPK Model.  ..........................129 

Figure 3.2- The schematic diagram of the gastrointestinal input model...........................130 

Figure 3.3- Model predictions and time course data of blood concentration of aniline after 

an oral dose of 0.15 mmol/kg........................................................................................134 

Figure 3.4- Model predictions and time course data of blood concentration of aniline after 
an oral dose of 0.375 mmol/kg. .....................................................................................135 

Figure 3.5- Model predictions and time course data of blood concentration of aniline after 

an oral dose of 0.75 mmol/kg (A), 1.5 mmol/kg (B) and 2.25 mmol/kg (C), respectively.
....................................................................................................................................136 

Figure 3.6- The rat PBPK simulations of spleen tissue exposure profiles for aniline, PCA, 
DMA, o-TOL and kidney exposure profile for PAP after oral dose of 0.15 mmol/kg ......137 

Figure 3.7- The human PBPK simulations of spleen tissue exposure profiles for aniline, 
PCA, DMA, o-TOL and kidney exposure profile for PAP after oral dose of 0.15 mmol/kg 
in males .......................................................................................................................138 

Figure 3.8- The human PBPK simulations of spleen tissue exposure profiles for aniline, 

PCA, DMA, o-TOL and kidney exposure profile for PAP after oral dose of 0.15 mmol/kg 
in females ....................................................................................................................139 

Figure 3.9- Predicted (curves) and experimental (points) blood concentrations of aniline for 
oral exposure of rats to 0.15 mmol/kg (A), 0.375 mmol/kg (B), 0.75 mmol/kg (C), 1.5 

mmol/kg (D) and 2.25 mmol/kg (E) doses.....................................................................143 

Figure 3.10- Toxicity target tissue exposure profile (AUC for kidney concentration time 
profiles in rat) after oral dose at the NOAEL for PAP based on MC sampling of model 
parameter variability ....................................................................................................144 

Figure 3.11- Global sensitivity; the model output – AUC in spleen as a function of the 
parameter values; parameters were generated according to truncated normal distribution.
....................................................................................................................................145 

Figure 3.12- Global sensitivity; the model output – AUC in spleen as a function of the 

parameter values; parameters were generated according to truncated normal distribution - 
continued .....................................................................................................................146 

Figure 3.13- Sensitivity analysis of metabolic constants for PCA, DMA, o-TOL and PAP 
on AUC in spleen and kidney, respectively ...................................................................147 

Figure 4.1- Theoretically female (F(x) - red curve) and male (G(x) - blue curve) earnings 
distributions. Samples of men and women result in PROB of 0% (A). In ideal situation, 
samples of men and women result in PROB of 50% (B).  ...............................................155 

file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464548
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464548
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464549
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464550
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464551
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464551
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464552
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464552
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464553
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464553
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464553
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464554
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464554
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464555
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464555
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464555
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464556
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464556
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464556
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464557
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464557
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464557
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464558
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464558
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464558
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464559
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464559
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464559
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464560
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464560
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464560
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464561
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464561
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464562
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464562
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464562


www.manaraa.com

xvi  

Figure 4.2- Illustration of the use of the overlap statistic, PROB, in drug degradation 
product safety risk assessment.   ...................................................................................155 

Figure 4.3- Probability distributions of AUC in target organ of toxicity at critical doses  .158 

Figure 4.4- Comparison between toxicity target tissue exposure distributions for aniline in 
the rat model at the NOAEL and predicted toxicity target tissue exposure distributions in 

human at different doses.. .............................................................................................160 

Figure 4.5- Plot of PROBs versus human doses of aniline for male (left) and female (right) 
populations.  .................................................................................................................161 

Figure 4.6- Plot of PROBs versus human doses of PCA for male (left) and female (right) 

populations.  .................................................................................................................162 

Figure 4.7- Plot of PROBs versus human doses of 2,6-DMA for male (left) and female 
(right) populations. .......................................................................................................163 

Figure 4.8- Plot of PROBs versus human doses of o-TOL for male (left) and female (right) 

populations.  .................................................................................................................164 

Figure 4.9- Plot of PROBs versus human doses of PAP for male (left) and female (right) 
populations.  .................................................................................................................165 

 

 

 

 

 

 

 

 

  

file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464563
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464563
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464564
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464565
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464565
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464565
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464566
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464566
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464567
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464567
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464568
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464568
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464569
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464569
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464570
file:///D:/WritingThesis/Final%20Deposit%20_%20HN%20Thesis.docx%23_Toc405464570


www.manaraa.com

1 
 
 

CHAPTER 1. INTRODUCTION 

1.1.Potential risks of drug instability 

 A fundamental requirement for the licensure of pharmaceutical products is that 

their quality attributes (including potency and purity) are maintained throughout their 

manufacturing, shipping and storage. A drug substance may generate toxic impurities via 

hydrolytic and/or oxidative degradation, whereby, not only the rate of drug potency loss 

but also the rate of degradant accumulation and the potential safety/toxicity risks may be 

critical drug product stability determinants.  

1.1.1. Concept of alerting structures  

 According to European Medicines Agency guideline (1) and U.S. FDA draft 

guidance (2), the use of chemical structural assessment is a valid means to predict the 

toxicity potential of drug impurities, including degradants. The concept of structural 

alerts was first elucidated by Ashby and Tennant (3-6) who investigated the correlation 

between chemical structure and DNA activity for about 300 compounds based on a 

Salmonella carcinogenicity assay. According to Ashby, structural alerts are structural 

features of a compound that correlate to carcinogenicity. They include primary or 

secondary aromatic amines (e.g. anilines, benzidines, 2-naphthylamine and its 

analogues), epoxides (e.g. ethylene oxide, styrene oxide), nitrosamines, hydrazines or 

azoxyalkyl compounds. Based on alerting structural analysis, Raillard and coworkers (7) 

conducted a study using a drug degradation database to evaluate the potential 

genotoxicity that may arise as a result of drug degradation. Approximately 70% of the 

structural alerts found in the degradant database were aldehydes, α,β-unsaturated 

carbonyls and primary aromatic amines. 

For example, the primary degradant of acetaminophen was determined to be p-

aminophenol (PAP) which contains a structural alert for an aromatic amine (8). 
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Consequently, the quantity of PAP is strictly controlled because of potential 

nephrotoxicity (9-12). Quantification of PAP is described in US Pharmacopeia (USP) 32–

NF27 and limited to a level of 0.005% in acetaminophen bulk substance (13). The limits 

for PAP may vary in different products depending on the dosage form and formulation; 

the monograph of paracetamol tablets in British Pharmacopoeia (BP) allows 0.1% (14). 

Chlorhexidine is an antiseptic antibacterial agent that can generate p-chloroaniline 

(PCA) via hydrolysis in aqueous solution (15, 16). The International Agency for 

Research on Cancer (IARC, 2006) categorizes PCA in their 2B Group, which means that 

this agent is possibly carcinogenic to humans (17). Chhabra and coworkers (18, 19) 

investigated toxicity of PCA in rats and mice and observed lesions in animals’ kidney, 

spleen and liver. Toxicological profiles of PCA were also studied by other authors (20, 

21) and indicate its primary toxicities include splenic fibrosis and sarcomas. Therefore, 

the limit of PCA in chlorhexidine gluconate oral rinse is set as 3 ppm by USP32-NF27 

(13). 

There are various commercially-available anesthetic products containing 

lidocaine, prilocaine, buvacaine, mepivacaine, or ropivacaine as active substances. 

During the storage of lidocaine preparations, 2,6-dimethylaniline (2,6-DMA), a potential 

carcinogenic agent (22-25), can be formed by lidocaine hydrolysis involving an 

intramolecular base-catalysis mechanism (26). Similarly, o-toluidine (o-TOL) can appear 

as a decomposition product during storage of drugs containing prilocaine (27). o-TOL 

can oxidize hemoglobin to methemoglobin and is known to cause bladder/spleen cancer 

in animal studies (28-30). By using electrochemical detection, Fijalek and coworkers (27, 

31) developed an analytical method to determine low concentrations of 2,6-DMA and o-

TOL based on their anodic oxidation reaction in various local anesthetic preparations. 

Quantification of the 2,6-DMA impurity in anesthetic products is also described by the 

European and British Pharmacopoeias. The BP 2003 allows for lidocaine and 
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bupivacaine injections and gels to contain not more than 400 ppm of 2,6-DMA, while for 

prilocaine, contents of o-TOL is limited to 1% of the active substance (27).  

Other potentially toxic aromatic amines arising from the degradation of drug 

substances include 4-nitro-trifluoromethyl-aniline from non-steroidal anti-androgen 

flutamide (32) and 2,6-dichloroaniline from oxidative degradation of diclofenac (33-35). 

1.1.2. Regulatory considerations  

According to the International Conference on Harmonization (ICH) guidelines 

(36), impurities in pharmaceuticals are components that remain with the active 

pharmaceutical ingredients, or arise during the manufacturing process and/or storage of 

the drug substance. The performance of the pharmaceutical products may be influenced 

by the presence of these impurities, even in small amounts. The ICH and FDA have 

published guidelines for the identification and qualification of impurities in new drug 

substances and drug products (36-38). According to the guidelines, impurities can be 

characterized as organic or inorganic impurities and residual solvents. Organic impurities 

may include impurities in starting synthesis materials, synthesis by-products, degradation 

products and intermediates. For degradation products, the ICH Guidance Q3B (R2) (37) 

provides recommendations for reporting, control, identification and qualification in drug 

products. The critical values for reporting, identifying and qualifying  impurities vary 

based on drug dosing regimens, and are shown in Table 1.1 (37).  

 
Table 1.1- Thresholds for degradation products in new drug products 

Reporting Thresholds 

Maximum daily dose Threshold 

≤ 1 g 0.1% 

> 1 g 0.05% 
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Table 1.2- Continued 

Identification Thresholds  

Maximum daily dose Threshold 

< 1 mg 1.0% or 5 µg TDI, whichever is lower 

1 mg - 10 mg 0.5% or 20 µg TDI, whichever is lower 

>10 mg - 2 g 0.2% or 2 mg TDI, whichever is lower 

>2 g 0.10% 

Qualification Thresholds 

Maximum daily dose Threshold 

< 10 mg 1.0% or 50 µg TDI, whichever is lower 

10 mg - 100 mg 0.5% or 200 µg TDI, whichever is lower 

> 100 mg - 2 g 0.2% or 3 mg TDI, whichever is lower 

> 2 g 0.15% 

TDI: total daily intake of the degradation product 

The critical value for reporting impurities ranges from 0.05% to 0.1%, and 

reporting an impurity may or may not require identification. 

Identification is required for any degradation product observed in stability studies 

present at a level greater than the identification threshold. Identification requires 

assignment of a specific chemical composition of the impurity. The critical value for 

identification is typically between 0.1% and 0.5% depending on the daily drug dose. For 

low dose drugs (< 1mg per day), the identification threshold is 1% of the total daily 

intake (TDI) or 5 µg (whichever is lower). 

Qualification is the process of evaluating safety data and establishing acceptance 

criteria for a degradation product. A degradation product should be qualified if it exceeds 

the limit which is the qualification threshold. Depending on the maximum daily dose, the 

critical range of the qualification threshold ranges from 0.15% to 1%.   

As an example shown in Table 1.2, a drug product wherein the total daily dose 

was 50 mg is considered. In this case, the reporting, identification and qualification 

thresholds would be 50, 100 and 200 µg, respectively. In this hypothetical example, an 
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analytical procedure revealed the presence of four drug degradation products (A, B, C 

and D) with their corresponding analytical results listed in column 2 of Table 1.2. In this 

scenario, compound B, C and D appeared at levels greater than the reporting threshold; 

hence they require reporting in the registration application using conventional rules of 

rounding. Compound C and D require identification; therefore their chemical structure 

needs to be identified. Compound D requires qualification based on toxicity data in 

preclinical studies and/or a demonstration of clinical safety at the selected qualification 

threshold. 

 
Table 1.3- Example of reporting, identifying and qualifying degradation products 

Degradant 
Amount 
observed 

(%) 

TDI 

(rounded to µg) 

Action 

Reporting 
(Action, Result) 

Identifying Qualifying 

A 0.04 20 No No No 

B 0.2121 100 Yes, 0.2% No No 

C 0.325 150 Yes, 0.3% Yes No 

D 0.63 300 Yes, 0.6% Yes Yes 

For a given degradation product, its acceptance criteria (allowable level) should 

be established no higher than its qualified level and along with safety considerations (38). 

In some cases, if the qualification thresholds are exceeded and adequate data are 

unavailable to qualify the degradation product, additional studies should be conducted on 

the drug product containing the degradant or isolated degradation products. 

The guidance from FDA and ICH provides a convenient approach to control drug 

degradation products. However, it does not provide a rationale for establishing 

degradation product acceptance criteria for those exceeding qualification thresholds or for 

potentially toxic compounds. 
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1.2.Toxicity-based risk assessment 

1.2.1 Traditional risk assessment 

 The goal of toxicity testing is to minimize potential adverse health impacts by 

setting safe human exposure levels for potentially toxic compounds. In the qualification 

of drug impurities, toxicity tests may include general toxicity or genotoxicity in animal 

models (38). The type of general toxicity tests may range from acute to subchronic and 

chronic studies. Traditionally, animal studies have served as the basis for most 

quantitative risk analysis and require interspecies extrapolation for human health 

evaluation. In the standard paradigm for non-cancer risk assessment, test animals are 

assigned to treatment (dose – level) and control groups. Dose amounts and route of 

administration are consistent with the intended use of the drug for humans. For each 

group, toxicity indicators such as body weight, biochemical parameters (e.g. albumin, 

glucose, and bilirubin) or adverse biological effects are measured. The result of a typical 

dose-response experiment is illustrated in Figure 1.1 wherein the percent of animals with 

critical adverse effect is displayed as function of different doses of toxicant. The 

statistically significant responses are determined by comparison of each treatment group 

to the control group. In Figure 1, point B is the highest non-statistically significant 

treatment group response compared with control group response, hence it is designated as 

the “no observed adverse effect level” (NOAEL) and in this hypothetical example, occurs 

at approximately 0.1 mg/kg body weight (39). 

 Reference dose (RfD) is the maximum acceptable human dose of a toxic 

substance calculated from NOAEL value in animals using the following Equation 1.1  

(39):  
 

RfD =  
NOAEL

UF1 × UF2 × UFother
 

(Eq.1.1) 
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A 
B 

 Various uncertainty factors (UF1, UF2, UFother) are used to account for potential 

sources of variability such as extrapolation from animals to humans, human population 

variability, extrapolation from short to long duration of exposure duration and database 

limitations due to experimental design or analytical techniques (40). Typically, each 

uncertainty factor is arbitrarily assigned a numerical value; a value of 10 is common. The 

selection of uncertainty factors typically does not consider chemical-specific toxicity 

mechanisms or pharmacokinetic data (40).  

  

 
Figure 1.1- Hypothetical dose response curve. Points 
indicate mean responses at different doses. Symbol 

“” indicates responses for treatment groups that are 
statistically different than control group response 

 In the traditional paradigm for cancer risk assessment, dose–response modeling is 

used to calculate a carcinogenic potency based on tumor growth observed in animal 

bioassays. Quantitatively, in the guidelines for Carcinogen Risk Assessment by U.S.EPA 

(2005) (41), curve fitting is used on the animal bioassay data to estimate a point of 

departure (POD) (typically a 10% response) near the lower end of the observed range of 

the data to mark the beginning of extrapolation to lower doses. The extrapolation can be 

done with a linear or a non-linear model. When the mode of action information suggests 
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that the shape of the dose-response curve below the POD is linear, then linear 

extrapolation should be used. A linear extrapolation is conducted by drawing a straight 

line to the origin and calculating the unit risk at any given dose. Risk estimate using the 

linear low dose extrapolation is shown in Figure 1.2. 

  

 

 

 

 

 

 

 

 

 

 The extrapolation from the POD can also be done with the non-linear model 

which considers the overall database to determine if inclusion of an uncertainty factor is 

needed and to determine a safety margin between the estimated exposure level and the 

POD. In the case of insufficient data, linear extrapolation is used as a default approach 

and generally is recognized as a conservative and health–protective approach (42). Either 

linear extrapolation or non-linear threshold analysis approach for cancer risk assessment 

may require additional considerations of variability of the human population compared to 

the experimental animal population. The extrapolation of cancer response across doses, 

species, and routes continues to represent a challenge (42).  

1.2.2 Uncertainty factor estimation 

 Until recently, drug/chemical risk assessment has relied on the traditional 

approach using uncertainty factors which can be applied across wide variety of 

Figure 1.2- Linear low-dose extrapolation approach 
from dose–response model 
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xenobiotics. As previously stated, these methods include little to no information about its 

chemical properties or toxicity mechanisms and require a number of conservative 

assumptions, estimates and rationalizations (43). It is generally recognized that inclusion 

of chemical–specific factors including pharmacokinetics, mechanism of toxicity and 

target population properties could significantly impact the risk estimates (44, 45). 

  In traditional risk assessment, 100-fold uncertainty factor is commonly applied to 

the NOAEL to derive safe levels of exposure in humans. This 100-fold safety factor 

consists of the product of two 10-fold factors for human variability and interspecies 

differences. The applicability of the default value of 10 for all xenobiotics, regardless of 

the extent of available information, to account for population variability in toxicokinetics, 

toxicodynamics or mode of action, lacks a clearly defined scientific basis. In an attempt 

to leverage available scientific data in a dose-response assessment, the International 

Program on Chemical Safety (46, 47) suggested the subdivision of these 10-fold factors 

to allow for variability in toxicokinetics and toxicodynamics. Values of 10
0.6 

(4) and 10
0.4 

(2.5), were proposed by Renwick (48) for species differences based on the analysis of 

small database, and equal values of 10
0.5 

(3.16) for human variability were adopted by a 

WHO task group on environmental health (46, 47). The aim of this subdivision of the 10-

fold factors was to allow toxicokinetics and toxicodynamics to be considered separately 

and also to allow the incorporation of suitable chemical-specific data for one particular 

aspect of uncertainty to replace the relevant part of the overall default uncertainty factor 

(48). Recently, the analysis of Walton and coworkers (49) has suggested that the current 

interspecies toxicokinetic default uncertainty factor of 4.0 is inadequate for species 

differences due to the wide variability between both compounds and the individual 

species. This analysis indicated that there are significant differences between humans and 

the test species in the metabolic kinetics of investigated compounds, enzymes involved in 

the metabolic reactions, the route of excretion and oral bioavailability. These factors are 
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determinants that can influence the extent of the difference between humans and a test 

species in the target tissue dose of a toxicant. Ultimately this work supports the 

substitution of uncertainty factors from the risk assessment process by the use of 

compound-specific data (49). 

 Aside from the uncertainty associated with interspecies scaling, another 

challenging issue is the heterogeneity of the human population. This heterogeneity is 

produced by inter-individual variations in physiology, biochemistry, and molecular 

biology, and results in differences among individuals in the target tissue dose associated 

with exposure (pharmacokinetics) as well as the time-dependent response to a given 

tissue dose (pharmacodynamics) (45). 

 According to the IPCS framework, the factor of 10 can be subdivided by 3.16 to 

account for human variability in toxicokinetics, and another 3.16 to account for 

variability in dynamics (50). If there are adequate chemical-specific pharmacokinetic and 

pharmacodynamic data, they can be incorporated and replace these default uncertainty 

factors to better characterize human variability in dose–response assessment. Renwick 

and colleagues (51) used an extensive database to investigate the adequacy of the 10-fold 

factor and its subdivision for human variability.  Data for the kinetics and clinical 

responses of 60 compounds were tabulated and the coefficients of variation were 

averaged for different studies. As a conclusion, analysis of kinetic data for subgroups of 

the population indicates that the standard default value of 3.16 for kinetics is not adequate 

for all subpopulations. The authors suggested that the uncertainty factor for inter-

individual variability in kinetics could be selected based on the best information 

available. The standard default of 3.16 should be used only in the absence of relevant 

toxicokinetic information. 

 A recent approach has been developed to replace the default uncertainty factors 

using the pharmacokinetic and metabolism literature wherein compounds are classified 
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according to their metabolic route so that pathway-related uncertainty factors can be 

derived for interspecies and human variability. These pathway–related uncertainty factors 

were derived using probe substrates for the major human phase I metabolism (52), phase 

II conjugation reactions (53) and renal excretion (54). As a result, the magnitude of 

internal dose differences between species was found to exceed the four-fold default value 

in some cases (e.g. mouse, 10.6; rat, 5.4) and to be less than the default value in other 

cases (e.g. rabbit, 2.6; dog, 1.6) (52). Similarly, for compounds which are eliminated 

primarily by renal excretion in humans, the differences between humans and mice may 

exceed the four-fold default factor for toxicokinetics (54).  

 The uncertainty factors due to human variability were investigated by Dorne and 

Renwick (55) for substrates of phase I and phase II metabolism and renal excretion. The 

authors observed the human variability factors to be below the default uncertainty factor 

with a range between 1.6 and 2.2 for all pathways.    

1.2.3 PBPK – based risk assessment 

Quantitative methodologies that incorporate xenobiotic-specific pharmacokinetic 

data have been used in risk assessment. In particular, the application of physiologically-

based pharmacokinetic (PBPK) modeling for toxicology risk assessment has been 

advocated as an alternative to traditional methods. The motivation for using PBPK 

models in risk assessment is to leverage knowledge about the biology of the test species 

and compound–specific properties into risk calculations, thereby reducing uncertainty in 

the human risk estimates. Moreover, because the parameters in a PBPK model have a 

biological correspondence, they provide a useful framework for evaluating the impact of 

physiological and pharmacokinetic factors on the variability of individual risks (56). 

The use of internal dose or tissue exposure dose, instead of the administered dose, 

has been advocated as a way to provide better characterization of the dose-response 

relationship for toxic compounds (42, 57). Implementation of PBPK models in risk 



www.manaraa.com

12 
 
 

assessment has been described elsewhere (40, 50, 57-59) and can be illustrated in the 

flowchart below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the first PBPK models used for risk assessment extrapolations was 

developed for methylene chloride (60). This model was used to predict tissue exposures 

to highly reactive metabolites from oxidative and conjugative pathways resulting from 

several different exposure scenarios for both mice and humans. In this application, the 

tumor incidence was correlated with the amount of metabolites formed from the 

conjugative pathway. The PBPK analysis suggests that conventional risk analyses greatly 

overestimate the risk in humans to exposure from low methylene chloride concentrations.  

Another example of a PBPK-based approach for environmental toxicants risk 

analysis was described by Leung and Paustenbach using 1,4-dioxane as a model 

Problem Identification  

Available Data Evaluation 
- The nature of the critical toxic effect 

- The dose-response relationship for the critical toxic effect 
- Mode of action and nature of toxic moiety 
- Processes involved in ADME of toxic moiety 
- Biochemical characteristics of toxic moiety and physiology of 

species 

Model Structure and Parameter Specification  

Mathematical and Computational Implementation  

Simulation of Toxic Moiety Exposure 

Model Refinement  

Model Validation 

Model Application 
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compound (61). The authors developed PBPK models for 1,4-dioxane to describe the 

time course of 1,4-dioxane in the blood and four tissue compartments for rats and humans 

receiving oral doses via drinking water. Due to the saturable metabolism of dioxane in 

both the rat and human, at low doses the metabolism appears to follow first-order 

kinetics, while at high doses the proportion of unmetabolized dioxane is increased. 

Nonlinear pharmacokinetics play an important role in the liver toxicity and subsequent 

carcinogenicity of 1,4-dioxane, especially at the high dose levels employed in the cancer 

bioassays. PBPK approaches can take into account saturation of metabolism at high doses 

when cancer risks observed in animals are extrapolated to humans. The tumor incidence 

was correlated with the tissue (liver) exposure dose. As a result, the risk - specific dose of 

dioxane for humans was found to be as much as 80 times higher than that calculated 

conventionally. 

 PBPK modeling can be used to quantify the impact of pharmacokinetic 

uncertainty and population variability in risk assessment (45, 62, 63). By using Markov 

Chain Monte Carlo (MCMC) sampling within a Bayesian statistical framework, a PBPK 

model for trichloroethylene (TCE) in rodents and humans was used to estimate of both 

variability between experimental groups and uncertainty in TCE toxicokinetics (64). The 

distribution of Cmax values of TCE’s metabolite for a continuous 1-ppm inhalation 

exposure of TCE in a human population was predicted, approximating a normal 

distribution (mean = 1.36, SD = 0.96). 

 The use of pharmacokinetic modeling in risk assessment provides a reliable 

method for incorporating cross-species, intra-species, cross-route, and dose regimen 

variability information.  The use of physiologically-based pharmacokinetic predictions is 

especially appropriate when animal pharmacokinetics studies are unavailable and when 

human pharmacokinetic studies cannot be justified (as in the case for drug degradation 

compounds and many environment toxicants). 
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1.3.Project overview and research objectives 

Appearance of drug degradation products during storage is a potentially important 

drug safety factor. To minimize toxicity risk, a critical level of a toxic degradant has to be 

identified as part of defining shelf-life. Conventional risk assessment practice estimates 

exposure risk for an average individual and typically applies a series of uncertainty 

factors to account for interspecies or intra-species differences associated with 

pharmacokinetics and pharmacodynamics. The effects of compound-specific properties 

are typically not part of the risk calculation.  

The objective of this proposal is to develop a process for leveraging compound-

specific pharmacokinetic information in the estimation of human safe dose for drug 

degradants using a series of chemically-related model drug degradants (substituted 

anilines). Our central hypothesis is that incorporation of PBPK modeling results in 

degradant risk specifications which are less stringent than those estimated by 

conventional risk assessment approach. The rationale for the proposed research is that a 

PBPK model utilizing rat to human scaling for target tissue toxicity in combination with 

Monte Carlo methods for estimating human reference dose provides a rational basis for 

assessing drug stability safety issues for drug substances that potentially degrade to toxic 

compounds.  

The specific objectives of this project are the following: 

 Determine pharmacokinetic parameters needed in PBPK simulations for model 

drug degradation compounds. A combination of literature and in vitro 

experimentation and prediction were used to obtain initial pharmacokinetic 

parameters. 

 Construct PBPK models for the selected compounds in rats and humans for 

intravenous and oral exposure. Sensitivity and uncertainty analysis were used to 

evaluate the impact of model input parameters on model predictions.  To evaluate 
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patient population effects on exposure profiles, the PBPK model parameters was 

varied in meaningful ways to reflect age and gender sources of patient variation 

using Monte Carlo methods.   

 Derive human-equivalent-no-adverse-effect doses based on predicted degradant 

exposure in toxicity target tissues. Distributions of target tissue exposures in rats 

and humans were generated by application of Monte Carlo method and compared 

based on a critical value. A human no-adverse effect dose was then selected at a 

critical value of 1%.  

 Finally, the PBPK-based risk assessment was compared to the traditional risk 

assessment approach using standard uncertainty factors. 

1.4.Whole body physiologically - based pharmacokinetic models 

Whole body PBPK modeling provides a quantitative description of the 

absorption, distribution, metabolism and excretion of drug substances to predict the 

concentration - time profiles of compounds administered through any route of interest in 

many different species (65). Whereas classical pharmacokinetics attempts to describe 

concentrations of drug in plasma/blood, PBPK modeling attempts to accurately predict 

drug profiles for body tissues by incorporating physiological and compound-specific 

properties into a mathematical framework. In other words, contrary to descriptive 

traditional pharmacokinetic models derived from empirical data, PBPK modeling is 

intended to leverage prior information of the system to predict an outcome. Since 

classical PK models do not incorporate anatomy, physiology, and biochemistry of the 

species of interest, interspecies predictions are limited to allometric scaling of individual 

pharmacokinetic parameters. PBPK models attempt to incorporate relevant biological and 

mechanistic information, enabling them to be used with limited animal experimentation 

for extrapolation of the kinetic behavior of chemicals from high dose to low dose, from 
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one exposure route to another, and from test animal species to humans (66). 

1.4.1 Modeling Methodology  

1.4.1.1 Structure of the generic whole body PBPK model 

 A whole body PBPK model represents the body as a collection of physiologically 

realistic compartments including organs (e.g. heart, lung), eliminating organs (e.g. gut, 

liver, kidney), distribution tissues (muscle, skin, adipose) and specific biophase organs 

(e.g. sites of toxicity or pharmacodynamic effects). These compartments are linked 

together by the arterial and venous blood flows. The need to represent a particular organ 

or tissue as a separate compartment is determined based on its relevance to target organ 

toxicity, mode of action, elimination pathways, distribution pathways and administration 

route. Model complexity and number of compartments are consistent with chemical 

characteristics, intended purpose and available pharmacokinetic data (50). The generic 

structure of whole body PBPK model is depicted in Figure 1.3.  
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Figure 1.3- Conceptual representation of a Whole Body 
PBPK Model. Blood flow rates associated with the 

compartments is represented by Q. Subscripts LU, HE, LI, 
KI, SP, and  GU mean lung, heart, liver, kidney, spleen and 

gut. QHA refers to the blood flow rate from the hepatic artery. 
Elimination is depicted as occurring from liver and kidney. 
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1.4.1.2 Model parameters and methods of parameter estimation 

 Model parameters: The characteristics of organ, tissues and drug are described by 

physiological and compound-specific parameters. Physiological Parameters  include 

arterial and venous blood flows, tissue volumes, tissue blood flow rates and tissue 

composition (lipid, phospholipids, and water). Comprehensive sets of the physiological 

parameters for humans and common laboratory animals are available in the literature (67-

71). Compound-specific Parameters include physicochemical properties (e.g. logP, 

pKa, dissolution rate) and biochemical/ biophysical properties (e.g. Vmax, Km, and 

permeability, fraction unbound in plasma or tissues, blood to plasma ratio). PK-derived 

Parameters are computed by combining compound-specific and physiological 

parameters, such as tissue-to-plasma partition coefficients (Kpu) estimated from logP, 

pKa and tissue composition and intrinsic clearance (CLint) derived from Vmax, Km and 

amount of liver microsomal protein. 

Methods of parameter estimation: In addition to literature resources, model 

parameters can be determined by the following methods: 

 In vitro assay: for example, binding to plasma protein, intrinsic clearance, 

metabolic constants (Vmax, Km) can be determined using microsomes or 

hepatocytes (72). 

 In silico calculation: for example, tissue-to-plasma partition coefficients 

estimated by tissue composition-based approach or effective permeability 

can be predicted using Quantitative Structure Activity Relationship 

(QSAR) method (73-75). 

 In vivo experiment: critical PK parameters can be determined by 

experimentation and parameter estimation / optimization methods based 

pharmacokinetic data. 

Tissue distribution is an important pharmacokinetics process. In the PBPK model, 
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a key characteristic is the affinity of drugs for specific tissues, which is defined by the 

tissue-to-plasma partition coefficient. Tissue-to-plasma partition coefficients (Kpu) can 

be measured experimentally (76-78) using tissue homogenates, tissue slices or isolated 

perfused organs based on steady state approaches. Determination of Kpu values by drug 

infusion to animals and assay of blood and tissues is quite laborious and time consuming, 

and therefore various methods have been proposed to predict Kpu from the 

physicochemical characteristics of the drug and the physiological composition of the 

tissues (73, 74, 79, 80). DeBuck and colleagues (81) compared two different methods for 

predicting tissue partition coefficients (73, 74, 79, 80) by computing the volume of 

distribution at steady state (Vss) based on predicted Kpu values. They found that the 

methods of Rodgers and Rowland yielded the most accurate predictions of Vss wherein  

80% of the predicted values for a diverse set of 50 compounds were within a two-fold 

range of the experimentally-measured values. 

For the majority of drugs, the liver is the major organ of drug metabolism. Hence, 

prediction of hepatic drug clearance has been investigated using various in vitro 

metabolizing systems. Metabolic parameters can be obtained with microsomes or 

hepatocytes either through substrate disappearance or initial rate of metabolite formation. 

The first step is to estimate in vitro intrinsic clearance based on estimated Michaelis - 

Menten constants (Vmax, Km) (CLint,in vitro = Vmax/Km; in μL/min/mg microsomal protein or 

μL/min/10
6
 hepatocyte cells) (82-84). The second step is to estimate in vivo clearance 

from in vitro parameters. Scaling factors used to estimate in vivo intrinsic clearance 

include microsomal protein in liver, nonspecific binding to biological material, and liver 

weight (85). 

The binding parameters (e.g. fraction unbound in blood and tissues, blood to 

plasma ratio) are determined by established methods, such as equilibrium dialysis, 

ultrafiltration, and ultracentrifugation (86). Equilibrium dialysis separates molecules 
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across a semipermeable membrane according to molecular size by utilizing the driving 

force of concentration differential between solutions on each side of the membrane. 

Ultrafiltration is a method that rapidly (usually within 10 min) separates free small 

molecules from protein-bound ones using a membrane. Between these two methods, 

equilibrium dialysis suffers from relatively long analysis time. The analytical procedure 

needs to be capable of determining the free drug concentration, non-specific binding of 

drugs onto the membrane, and possible leakage of bound drug through the membrane. 

In vitro methods are available for estimating drug permeability, such as 

immobilized artificial membrane (IAM) high-performance liquid chromatography 

(HPLC), cell layer (Caco-2) permeability, and parallel artificial membrane permeability 

assay (PAMPA). The IAM and PAMPA methods model only passive diffusion. The 

Caco-2 method models passive diffusion, active uptake transport, efflux, and paracellular 

permeability (86). The permeability of compounds can also be predicted by in silico 

models which describe the Quantitative Structure and Activity Relationship (QSAR) 

between permeability and compound physicochemical descriptors (87) . 

Mathematical description of PBPK models 

 PBPK modeling describes the physical, biochemical and biophysical processes 

that determine the fate of a drug in the body: dissolution/drug release, absorption, 

distribution and elimination. 

 Oral drug absorption: Oral administration is the most popular and convenient 

route of drug administration. A drug administered orally needs to get absorbed into 

systemic circulation by passing from the gastrointestinal lumen, through the intestinal 

wall and through the liver before entering systemic circulation. Therefore, drug oral 

bioavailability is the product of the fraction of the dose which enters the gut wall (Fa), the 

fraction of drug which escapes metabolism in the gut wall and enters the portal vein (Fg), 

and the fraction of the drug that escapes hepatic first-pass metabolism (Fh). 
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F =  Fa × Fg × Fh 

Several factors can affect the processes involved in drug oral absorption such as 

dissolution rate, drug physicochemical properties (solubility, lipophilicity, pKa) and 

physiological factors (e.g. gastric emptying, intestinal transit time, GI fluid pH, intestinal 

blood flow, transporters, enzymes). All these components can be incorporated in PBPK 

model to provide realistic prediction of drug absorption kinetics (88, 89). 

Drug distribution refers to the reversible partitioning of a drug into the various 

tissues of the body from the systemic circulation, driven by blood flow rates and drug 

permeation across membrane barriers. The rate and extent of drug distribution into tissues 

is determined by several factors, such as blood flow rates, drug permeability, 

concentration of plasma proteins, hematocrit and membrane transporters. Other 

compound-dependent factors are responsible for the distribution of drug in the body such 

as membrane permeability, tissue partition coefficients, blood-plasma ratios and drug 

affinity to influx or efflux transporter proteins. These parameters represent the 

characteristics of the distribution process and can be integrated into a PBPK model for 

distribution. For example, for a non-eliminating tissue (e.g. brain, adipose, heart, muscle, 

spleen), the rate of change of drug concentration in the tissue (dCtis/dt) is described by the 

differential equation below (Equation 1.2): 

Vtis
dCtis

dt
= Qtis (CAr −

Ctis×KB/P

fup×Kputis
)               (Eq. 1.2)                

It is assumed that that distribution of drug into tissue is limited by the blood flow 

rate to the tissue. Qtis is the blood flow rate into the tissue, Vtis is the volume of the tissue, 

CAr is concentration of drug in arterial blood, fup is the unbound fraction in plasma, KB/P 

is blood-plasma concentration ratio and Kpu is tissue-plasma partition coefficient defined 

as the ratio of concentration of test compound in the tissue to unbound compound in 

plasma at steady state. 
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The volume of distribution cannot be considered as a constant due to the fact that 

the proportion of the drug in different tissues changes with time (90). By determining the 

partitioning to various tissues, volume of distribution of drugs can be estimated using the 

following Equation 1.3 

Vdss = Vplasma + VRBC ×
KB/P−(1−H)

H
+ ∑ Vi. Kpitissues  

Where, VdSS refers to volume of distribution at steady state. Vplasma, VRBC and Vi 

are volume of plasma, erythrocyte and tissue, respectively. KB/P and H are blood to 

plasma ratio and hematocrit value. Kpi is tissue-to-plasma partition coefficient.  

Drug elimination: The process of drug elimination includes metabolism 

(enzymatic biotransformation) and excretion, typically via the biliary and/or renal route. 

As with other PK parameters, drug metabolism and excretion are influenced by both the 

physiology of the species and compound properties. Equation 1.4 is an example used in 

PBPK modeling to describe the nonlinear drug elimination process, in which Vmax and Km 

are maximal velocity and Michaelis constant from the Michaelis-Menten equation. 

KpuLiveris liver-unbound plasma partition coefficient.  

VLiver
dCLiver

dt
= QLiver (CAr −

CLiver×KB/P

fup×KpuLiver
) −

Vmax×
CLiver

KpuLiver

Km+
CLiver

KpuLiver

  
(Eq.1.4) 

The entire PBPK model can be built by coupling differential equations for all 

selected compartments to describe the time course of a drug in the body using mass 

balance for venous blood (Equation 1.5): 

VVen

dCVen

dt
= ∑

Qtis × Ctis × KB/P

fup × Kpu𝑡𝑖𝑠 − QVen × CVen  (Eq.1.5) 

Certain constraints need to be maintained in parameterizing these equations. For 

example, the sum of blood flow rates to all tissues adds up to the total cardiac output. The 

weights of individual tissues should be less than or equal to the body weight. The total 

(Eq.1.3) 
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administered dose of test compound should be equal to the sum of the amount absorbed 

plus its amount in the body and amount eliminated. The equations above, with 

appropriate parameter values and initial conditions, form a system of differential 

equations that can be solved to predict the time profile of drug concentrations in each 

tissue compartment. Implementations in R or MATLAB can be used for extensive model 

evaluation associated with MCMC sampling. 

Model evaluation 

Once the initial parameter values have been estimated, they are incorporated into 

a system of differential equations that are numerically integrated to predict plasma, blood 

and tissue concentration time profiles. These predicted profiles are compared with 

experimentally observed concentrations to evaluate the model. During this model 

refinement process, the model structure and parameters need to be physiologically and 

biochemically realistic and appropriate. In PBPK modeling, predictions that are within a 

factor of 2 of the experimental data have frequently been considered adequate (50) . Once 

a PBPK model has been validated, model simulation may be performed for a given set of 

initial conditions, such as species of interest, dosing route, dosing levels, and applied for 

a specific purpose. 

1.4.2 Uncertainty and Variability 

In their review, Bois and coworkers (62) distinguished uncertainty from 

variability by defining variability as a product of inter-individual differences. Uncertainty 

is lack of knowledge and may have various sources. For example, uncertainty results 

from experimental error in measuring the ‘‘true’’ value of a response. Overall, 

uncertainty is a defect in knowledge that typically can be reduced by additional 

experimentation, while variability is a fact of life that can only be better characterized by 

additional experiment. Figure 1.4 illustrates the sources of uncertainty and variability 

consideration in PBPK modeling. 
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In conventional risk assessment methods, a single value estimate of risk has often 

been used to depict the expected risk for an “average” person. A more logical 

representation of risk for a population with various subpopulations (e.g. neonates, adults, 

and the elderly) should be a value that incorporates inter-individual variations. 

Physiological, anatomical and biochemical variation is inherent to any population. It 

cannot be minimized, for example, by experimental design and therefore must be 

quantitatively characterized in describing risk. Similarly, compound-specific PBPK 

parameters are subject to inherent population variability, but also are imbued with 

uncertainty associated with measurement inaccuracies and imprecision. Therefore, both 

uncertainty and variability are relevant to risk assessment. Monte Carlo methods coupled 

with the PBPK models can be used to evaluate uncertainty and variability (57). 

Generally, in Monte Carlo analysis, parameters are repeatedly sampled from distributions 

to generate output distributions after a large number of model iterations. 

In order to perform model parameter analysis, coefficient of variation of 

parameters and their distributional forms must be obtained for model simulations. 

Physiological parameter variabilities are often based on estimates of standard error 

included in a review of the physiological literature (67). Biochemical and PK parameter 

variability can be measured directly from experimental data (91). 

Using sensitivity analysis, model parameters can be evaluated to determine which 

one has the most influence on model predictions (92, 93). There are two approaches: 

local sensitivity and global sensitivity analysis. Local sensitivity is the sensitivity of the 

model output about a specific point in parameter space. In contrast, global sensitivity 

analysis determines the effect of simultaneous parameter variation on model outcome 

response by sampling predefined parameter distributions (94).  

 

 



www.manaraa.com

24 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.3 Limitations of PBPK Modeling 

Although numerous studies on the use of PBPK modeling in human health risk 

assessment have been appeared in literature, this approach has some practical limitations 

and issues. McLanahan (95) emphasized the need of standardized model evaluation 

criteria and a thorough and efficient review process to prepare a model for application. 

Other issues include model code availability, portability, and validity. Probabilistic (e.g., 

population-based) PBPK models and evaluation of critical parameter values are needed to 

fully characterize population variability.  

During PBPK model development, model parameters can be obtained via 

available data or in vitro and in vivo experimentation. Due to a large number of unknown 

model parameters, the need of improving their quality, as well as a sensitivity analysis of 

  

 

Figure 1.4- Illustration of uncertainty and variability in 

pharmacokinetic population models. At the individual level, 
blood concentrations (y) are measured experimentally with the 
residual error variance σ

2
 (uncertainty). The PBPK model is a 

function (f) of exposure level (E), time (t), a set of parameters 

(). The population level contained prior distributions (P) for 

the population mean (µ) and population variance (
2
) - 

variability for each PBPK model parameter. 

(Figure adapted from [61]) 
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parameter impact on the dose metric, is essential. Another issue is the diversity of human 

population (e.g.,young, elderly, obese, pregnant and health status), thus, careful 

consideration of the variability associated with subpopulation is needed for meaningful 

population risk assessment.  

1.5.Model compounds  

1.5.1 Selection of model compounds  

In order to investigate the utility of the proposed risk assessment procedure, a 

series of substituted anilines was chosen to be the subject of our investigations (Table 

1.3).  These compounds were selected because they are reported degradants in 

commercially-available drug products, known or potential toxicants, and structurally-

similar to aniline which has been the subject of some detailed environmental toxicology 

studies. 

Table 1.4- Model drug degradant and parent API 

Degradant Structure API 

Aniline 
 

n/a 

p-chloroaniline 
 

Chlorhexidine 

p-aminophenol 

 

Acetaminophen 

2,6-xylidine 

 

Lidocaine 
Bupivacaine 
Prilocaine 

2-methylaniline 

 

Lidocaine 
Bupivacaine 
Prilocaine 
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1.5.2 Critical effect of model compounds  

The acute toxicity of aniline and structurally-related aromatic amines are 

associated with their ability to form methemoglobin, increase splenic weight and damage 

to erythrocytes (96-98). The formation of methemoglobin results from the oxidation of 

hemoglobin by phenylhydroxylamine, the N-oxidation product of aniline (21). In a long-

term feeding study, aniline and structurally-related compounds (p-chloroaniline, o-

toluidine) produced spleen tumors in rats given high doses of compound in 2-year 

bioassay studies (99-101). According to chronic animal bioassays in the same strain of 

rats, the tumorigenic response induced by aniline and p-chloroaniline appears to be non-

linearly related to dose (21). The mechanism of splenic toxicity of aniline and 

structurally-related compounds results from their erythrocyte toxicity and is due to the 

scavenging of chemically-damaged red blood cells by the spleen, leading to the 

development of spleen tumors (21, 96, 102-104).  

Aniline-induced splenic toxicity has been quantified in several dose-response 

studies (98, 105, 106). Jenkins and colleagues (98) investigated the effect of single oral 

doses of aniline in the rat and in humans. Oral doses of 5, 15 and 25 mg aniline, 

respectively, were administered on three successive days to each of 20 volunteers ranging 

in age from 22 to 45 years old. Male rats (Colworth-Wistar albino strain) were given 

aniline in isotonic saline by injection into the tail vein or by stomach tube. Isotonic saline 

was administered instead of aniline to control animals. Blood samples were obtained after 

each dose of aniline and were subject to the estimation of methemoglobin. Doses of 5 and 

15 mg aniline produced no significant increase of methemoglobin in 20 subjects, but a 

significant increase followed the administration of 25 mg aniline and higher doses. In the 

rat, the no-effect oral dose (NOAEL) was approximately 10 mg/kg body weight to 

produce methemoglobinemia. In addition to the increase in percentage of 

methemoglobin, the authors also observed increases in splenic weight of rats fed diets 



www.manaraa.com

27 
 
 

containing aniline.  

Chhabra and Thompson (18) conducted a toxicity study to characterize p-

chloroaniline (PCA) toxicity in rats (Fisher 344/N), including the identification of target 

organs and the establishment of dose-response relationships (Figure 1.5).  The weights of 

brain, liver, thymus, kidney, heart, lung and testis for dosed groups were not significantly 

different from those of the vehicle controls. However, spleen weights were increased in 

PCA-treated groups, and a clear dose response relationship was observed in both sexes. 

 

 
Figure 1.5- Spleen weights for rats in a 13-week gavage 

study of p-chloroaniline hydrochloride. (Those points 
marked with asterisks differ significantly from the 

corresponding control value). 

p-Aminophenol (PAP) is a nephrotoxicant in the rat which has been shown to 

produce selective necrosis to renal proximal tubules (11, 12, 107-109). In the study of 

Newton el al. (110), male F344 rats received various doses of PAP hydrochloride in 

aqueous solution (0 to 200 mg/kg). Each group contained four rats. After 24 hr of PAP 

administration, blood was collected and the resulting renal function measurements 

indicated damage. Blood urea nitrogen (BUN) was elevated at doses of PAP as low as 

100 mg/kg. Based on the effect of PAP on renal function, the NOAEL of PAP was 

detected at the dose of 25 – 50 mg/kg PAP (Figure 1.6). 
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Figure 1.6- Effect of p-aminophenol on blood urea 
nitrogen in Fisher F344 rats. * Significantly different 

from control (0 mg/kg PAP), p < 0.05 

Harada and colleagues (111) conducted a reproductive and developmental toxicity 

screening study of PAP in rats. Twelve male and female rats per group were given PAP 

by gavage at 0, 20, 100, or 500 mg/kg/day. The study’s findings show that PAP is a 

general and reproductive/developmental toxic, but it is unlikely to be teratogenic in rats. 

These findings indicated that the NOAEL of PAP for general toxicity is considered to be 

20 mg/kg/day. 

In the 2-year studies of 2,6-dimethylaniline (2,6-DMA) conducted in Charles 

River CD rats, decreases in erythrocyte counts, accompanied by decreases in hemoglobin 

and hematocrit levels, were observed (112). Investigators reported anemia and 

methemoglobinemia in rats exposed to 2,6-DMA (113). In a dietary rat study as part of 

the National Toxicology Program (112), 2,6-DMA has been shown to cause significant 

increases in the incidence of carcinomas in the nasal cavity of both male and female rats 

when provided in the diet at 3000 ppm for 2 years. The rat oral chronic lowest-observed-

adverse-effect level (LOAEL) of 2,6-DMA was reported as 15 mg/kg. 

There are numerous reports on the toxic and carcinogenic effects of o-toluidine 

(o-TOL) (28, 30, 100, 114). Increased incidence of bladder cancer among workers 

employed in dyestuff factories which use o-TOL was found (115, 116) . Hecht et al. [4] 
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investigated the carcinogenicity of o-TOL and of one of its metabolites, o-nitrosotoluene, 

in rats. They found that both compounds induced comparable numbers of peritoneal 

tumors and fibroma of the skin and the spleen.  A sub-acute (14 days) feeding study in 

male and female Fischer rats (n = 5 per sex and group) with doses of 0, 500, 3000, 6000 

ppm was performed to investigate the urinary bladder toxicity of o-TOL (117). 

Statistically significant and dose-related increases in methemoglobin production were 

found in all treated animals. Therefore a NOAEL could not be established. The LOAEL 

based on methemoglobinemia (male and females) and decreased body weight gain 

(females) was 500 ppm (23.7 mg/kg/day for males and app. 25.5 mg/kg/day for females 

after adjusting to the test substance stability). 

1.5.3 Mode of action of toxicity 

The biotransformation of aniline compounds occurs via N-oxidation to form 

phenylhydroxylamines, oxidation of the phenyl ring to form phenols, acetylation of the 

amino group to form acetanilides, and sulfate and glucuronide conjugation of oxidative 

metabolites (118, 119). Harrison and co-authors (119) found the major metabolic 

pathways involved ring oxidation to yield 4-aminophenol, as the major metabolite and, 

after acetylation, 4-hydroxyacetanilide (acetaminophen).  

An additional dead-end pathway 

leads to phenylhydroxylamine, 

which in the red blood cell forms 

a redox pair with nitrosobenzene. 

Pathways of aniline metabolism in 

rats were depicted in Figure 1.7.  

 

 

 
Figure 1.7- Metabolic scheme of aniline in rat liver 
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The data from Harrison indicates that phenylhydroxylamine is largely responsible 

for the damage to red blood cells which results in the hemolytic anemia associated with 

aniline exposure in animals. Side reactions may occur within erythrocytes including 

binding of phenylhydroxylamine to erythrocytic protein (9), and binding of both 

nitrosobenzene and phenylhydroxylamine to sulfhydryl groups in glutathione or protein. 

Khan’s studies of aniline exposure in rats (103, 105, 120) demonstrated an 

association between erythrocyte damage and the severity of the splenotoxicity. Since one 

of the major functions of the spleen is to remove damaged erythrocytes, aniline-damaged 

erythrocytes would be expected to be scavenged by the spleen, especially by phagocytes. 

The deposition and subsequent breakdown of damaged erythrocytes will not only release 

aniline and/or its metabolites, but, most importantly, will also result in accumulation of 

iron in the spleen which may catalyze the generation of tissue-damaging oxygen radicals 

and subsequently results in lipid peroxidation and protein oxidation. During the 

scavenging of damaged erythrocytes, the splenic phagocytes can become activated and 

release reactive oxygen species (ROS) which could further contribute to the oxidation 

leading to tissue injury. 

1.5.4 Pharmacokinetic data for model compounds  

Aniline is lipophilic base, with a pKa of 4.6, and would be expected to be rapidly 

and completely absorbed from the small intestine. Kao and coauthors (121) observed that 

urinary elimination of metabolized aniline in sheep and rat was extensive and no free 

aniline was detected in the urine. In rats, sulfate conjugates were the major metabolites 

(77%). The concentration ratios of aniline and phenolic aniline metabolites in plasma 

from spiked blood samples, as compared to similarly spiked water samples, was 1:1, 

indicating that the compounds were distributed equally in plasma and erythrocytes, and 

that plasma levels of these compounds were reflective of total blood levels. The time 

course of aniline in rat blood after i.p. administration (119) is shown in Figure 1.8. 
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Figure 1.8- Blood concentration time profiles of aniline administered 
intraperitoneally in rats 

More than 90% of PCA was excreted into the urine (18, 122). Very little PCA 

was eliminated unchanged and no p-chloroacetanilide was observed. Instead, two major 

components were observed: 2-amino-5-chlorophenylsulfate and p-chloro-oxanilic acid, 

along with other minor metabolites. PCA is rapidly absorbed after oral administration. 

The orally-administered HCl salt would be neutralized in the small intestine, and the free 

base form of chloroaniline would be absorbed into the systemic circulation. 

According to the IARC Monographs (123) on the evaluation of carcinogenic risks 

to humans from 2,6-DMA exposure, the absorption half-time of 2,6-DMA was rapid 

(14.4 min). The metabolism of 2,6-DMA was examined qualitatively in rats, and 4-

hydroxy-2,6-dimethylanilne and 3-methyl-2-aminobenzoic acid were identified as major 

and minor urinary metabolites, respectively. Short el al. (124) concluded that p-

hydroxylation was the major metabolism pathway of 2,6-DMA in rats. 

Metabolism of o-TOL was assessed in male F344 rats (125). Following a single 

dose (400 mg/kg subcutaneously) of radioactive o-TOL, > 80% of the radioactivity 

appeared in the urine and < 3.5% in feces after 48 hours. Major routes of metabolism 

were N-acetylation and hydroxylation at the 4-position. Minor pathways included 
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hydroxylation at the 6-position, oxidation of the methyl group, and oxidation of the 

amino group. 

p-Aminophenol metabolism was investigated by Yan et al. using rat hepatocytes 

(126). PAP was found to be metabolized predominantly to PAP-S-glutathione conjugates 

and accounts for > 50% of the metabolites identified in hepatocytes. In vitro 

biotransformation of PAP was conducted in human hepatocytes (127). The authors 

concluded that human hepatocytes mainly converted PAP to sulfate or glucuronic acid 

conjugates of N-acetyl-p-aminophenol or PAP. The pharmacokinetics and metabolism of 

PAP after dermal exposure to PAP were investigated in rats by Dressler et al. (128). 

Blood and plasma samples were analyzed for radioactivity and the presence of 

metabolites. However, no free PAP was detected in the plasma. 
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CHAPTER 2. PBPK MODEL PARAMETERIZATION 

2.1.Introduction 

PBPK models aim to describe the pharmacokinetics of drugs within the body in 

relation to blood flows, tissue volumes, along with routes of administration, 

biotransformation pathways, and interactions with the tissue or organ. As mentioned in 

Chapter 1, PBPK models consist of a number of biological, physiological and compound-

specific parameters which are obtained either experimentally, by calculation, or from the 

literature to predict drug concentration time profiles in blood/plasma and tissues. In this 

chapter, the studies used to estimate initial model parameter values needed in PBPK 

simulations for drug degradation model compounds are presented. A combination of 

literature, in vitro experimentation and in silico prediction were used to obtain initial 

model parameters. 

2.1.1. Physiological parameters 

The values for physiological parameters used in PBPK modeling (e.g. tissue 

volumes, rates of tissue blood flow, cardiac output, tissue composition) have been 

published in a number of references (1-6) but still represent a diverse quality of data. In 

the majority of the published resources, the authors provided point estimates for the mean 

value of specific parameters. Occasionally, some studies reported the biological and 

experimental variability associated with these estimates. Representation of the variability 

associated with these parameters is essential for population-based PBPK simulation using 

Monte Carlo methods (2). For example, the publication from the International 

Commission on Radiological Protection (ICRP) - “Basic Anatomical and Physiological 

Data for Use in Radiological Protection: Reference Values” presents age- and gender -

specific reference values for anatomical and physiological parameters which can be used 

to estimate radiation doses for humans (1). Data from Western European and North 

American populations were used to define ICRP reference values because these 
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populations have been well-studied with respect to anatomy, body composition, and 

physiology.  This report also provided information on individual variation associated with 

several parameters due to differences in age, gender, race, such as the mass of the 

stomach, small intestine, large intestine, kidneys and bone and their corresponding 

standard deviations in males and females. Another useful study by Brown et al (2)  

contained an extensive compilation of physiological parameter values from open 

resources for commonly used laboratory animals and humans. Some parameter estimates 

from this study were used to provide variability estimates for model parameter sensitivity 

analysis.  

2.1.2. Tissue to plasma partition coefficients  

In addition to physiological and anatomical parameters, tissue-to-plasma partition 

coefficients are key biochemical parameters that determine the rate and extent of tissue 

distribution. These parameters are estimated by various methods. For example, Poulin 

and Thiel (7) and Rodgers and Rowland (8, 9) derived prediction equations for tissue 

partition coefficients based on physicochemical properties of drug molecules, protein 

binding and the composition of specific tissues.  

The model proposed by Poulin and Thiel considered drug solubility in lipids and 

water and its binding to macromolecules. Model assumptions include steady-state, 

uniform distribution within a tissue and passive diffusion based on lipophilicity of 

unbound, unionized drug. However, this model does not consider paracellular 

permeability, which is important for small, hydrophilic molecules such as group of 

substituted anilines, nor does it consider transporter-mediated distribution. Additionally, 

no distinction was made between acids, bases and neutral compounds with regard to 

interaction with tissue components. Rodgers and Rowland (8) extended the model to 

reflect the significance of electrostatic interactions between moderate to strong bases and 

Type 1 zwitterions (at least one basic pKa ≥ 7) and acidic phospholipids.  A separate 
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model (9) was also developed for very weak bases, neutral compounds, acids and Type 2 

zwitterions (no pKa > 7) to address their bindings to extracellular proteins such as 

albumin and lipoprotein. Mathematically, the model of Rodgers and Rowland for acids, 

neutral compounds and very weak bases was derived as described as follows: 

Kpu is the ratio of concentration of unbound drug in tissues (CT) to unbound drug 

in plasma (CuP) at steady state. The total concentration of drug in tissues is the sum of 

concentration in each component (Equation 2.1): 

CT = CuIW × fIW + (CuEW + CPR,EW) × fEW + CNL × fNL + CNP × fNP  (Eq.2.1) 

Where f refers to fractional tissue volume; and IW, EW, NL, NP and PR refer to 

intracellular water, extracellular water, neutral lipid, neutral phospholipid and protein, 

respectively. 

For very weak monoprotic bases, X and Y are defined as the inverse fractions of 

weak base unionized in intracellular water and plasma, respectively:  

X = 1 + 10pKa−pHIW ; Y = 1 + 10pKa−pHP 

For monoprotic acids, X and Y are inverse fractions of monoprotic acid unionized 

in intracellular water and plasma, respectively: 

X = 1 + 10pHIW−pKa ; Y = 1 + 10pHP−pKa 

For neutral compounds:  X = Y = 1 

The concentration in the different cellular components in Equation 2.1 was 

calculated as below: 

 The first term is the concentration of drug in intracellular water:  

CuIW × fIW = CuP ×
X

Y
× fIW                       (Eq. 2.2) 

 The second term is the concentration of drug in extracellular water: 

(CuEW + CPR,EW) × fEW = (CuP + CuP × KaPR × [PR]EW) × fEW 

= CuP × (fEW + KaPR × [PR]T)             (Eq. 2.3) 

Where, KaPR is the association constant of acids and very weak bases for albumin, 
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and neutral drugs for lipoproteins. KaPR is assumed to be identical in all tissues, and can 

be calculated as Equation 2.4: 

KaPR = [
1

fu
− 1 − (

P×fNL,P+(0.3P+0.7)×fNP,P

Y
)] ×

1

[PR]P
         (Eq.2.4) 

[PR] refers to albumin or lipoprotein concentration in tissue ([PR]T) or plasma 

([PR]P). Po/w is the octanol/water partition coefficient which is used to describe 

partitioning for non-adipose tissues. Pvo/w is the vegetable oil / water coefficient which is 

used to describe partitioning for adipose tissue, based on the study of Poulin et al. which 

indicated that vegetable oil was a better surrogate than n-octanol for neutral lipid such as 

adipose tissue (10). 

 The third term is the concentration of drug in neutral lipids 

CNL × fNL =  
CuP×P

Y
× fNL                                     (Eq.2.5) 

 The fourth term is the concentration of drug in neutral phospholipids: 

 CNP × fNP =  
CuP

Y
(0.3P + 0.7) × fNP                           (Eq.2.6) 

 Substitution of the drug concentrations in various tissue components (Eq. 2.2 – 

2.6) into equation 2.1 and Kpu can be obtained as Equation 2.7: 

Kpu =
CT

CuP
=

X

Y
× fIW + fEW + [

1

fu
− 1 − (

P × fNL,P + (0.3P + 0.7) × fNP,P

Y
)] ×

[PR]T

[PR]P
 

+  
P × fNL + (0.3P + 0.7) × fNP

Y
 

                        (Eq.2.7) 

2.1.3. In vitro methods for determination of metabolic constants  

The group of model drug degradants (Table 1.3) has been reported to be 

metabolized mainly in the liver. Hence, in order to express the rate and extent of 

metabolism in PBPK model, metabolic parameters, such as intrinsic clearance (CL int), the 

maximum metabolic rate (Vmax) and the Michaelis constant (Km - the value for substrate 

concentration at the half-maximal velocity) need to be estimated. Intrinsic clearance CLint 
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is defined as the ratio of Vmax and Km of all enzymes involved in its metabolism, provided 

that the substrate concentration is well below the Km of the metabolizing system (11). 

Assessment of the underlying primary parameters, Vmax and Km, enables the prediction of 

non-linear kinetics which may improve the accuracy of the prediction of in vivo 

pharmacokinetics (12). Vmax and Km are typically determined using in vitro experiments 

to measure metabolism rates, such as liver microsomes, hepatocytes and cytosol (13, 14). 

In general, these parameters can be estimated by measuring the rate of metabolite 

appearance or rate of substrate depletion. Metabolic pathway specificity plays an 

important role in metabolite appearance rate whereas depletion rates represent the 

summation of all metabolic pathways and therefore are potentially more useful in 

estimating overall intrinsic clearance. 

Depending upon the ratio of the initial substrate concentration to the Michaelis 

constants, the substrate depletion profile will reflect first order, zero order or mixed order. 

Therefore, depletion profiles are typically evaluated by using initial rate conditions 

wherein the final substrate concentration is within 20% of the initial concentration and 

the rate can be estimated by linear regression of the substrate concentration versus time. 

Under these conditions: 

[St] = [S0] − k0 × t 

υ =  −
d[S]

dt
= k0 

v =
Vmax × [S0]

Km + [S0]
 

St is the substrate concentration at time t and S0 is initial substrate concentration. And k0 

is the zero order rate (also the rate constant). 

2.1.4. Plasma and microsomal protein binding  

Plasma protein binding impacts both the pharmacokinetics and 

pharmacodynamics of a compound. Only the unbound fraction of a drug in plasma is 
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available for many pharmacokinetic and pharmacodynamic processes, such as membrane 

permeation and receptor binding. If the drug molecules are highly bound to plasma 

protein, they may have restricted distribution into target tissue and will be retained in 

plasma. High plasma protein binding also can cause decreases in drug metabolism, 

clearance and prolong drug half-life (15). Consequently, the determination of the plasma 

protein binding properties of a compound is essential during PBPK model development. 

Albumin and acid glycoprotein are responsible for most plasma binding of drug 

molecules. Some lipophilic drugs also extensively bind to plasma lipoproteins (8, 9). The 

model degradation products (substituted anilines) are weak bases and hence primarily 

bind to albumin (8, 9).  

Prediction of the in vivo metabolic clearance of compounds has been investigated 

using variety of in vitro metabolizing systems, such as liver microsomes, hepatocytes and 

cytosol. Nonspecific microsomal binding in the in vitro metabolic assays can 

significantly affect the observed kinetics of metabolism and reduce the accuracy of the 

clearance prediction (16). Therefore, estimated metabolism parameters need to be 

corrected for the unbound drug fraction (fumic) to predict in vivo clearance. 

The extent of protein binding in plasma and microsomes can be determined using 

the ultrafiltration technique. Ultrafiltration relies on centrifugal force to drive the 

unbound test compound through a size-selective membrane. Ultrafiltration methods are 

generally less time-consuming than other protein binding determination methods such as 

equilibrium dialysis. However, non-specific binding of the test compounds to the 

ultrafiltration device components should be determined for plasma protein binding 

calculations (17). 

2.1.5. Prediction of Caco-2 permeability using molecular descriptors  

The permeability of a drug across cell membranes is an important determinant of 

both the rate and extent of absorption following oral administration. In PBPK modeling 
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for orally administered compounds, effective intestinal permeability coefficients must be 

determined. The in vitro permeability across monolayers of the human colon carcinoma 

cell line (Caco-2), cultured on permeable supports are commonly used to predict the 

absorption of orally administered drugs. Recently, computational methods (Quantitative 

Structure Activity Relationship – QSAR) have been developed to predict permeability 

using various molecular descriptors (18-24). In this approach, several molecular 

descriptors that may influence the permeation of drugs through biological membranes by 

a passive diffusion mechanism such as solubility, lipophilicity, polarity molecular size 

and hydrogen bonding capability are used to construct a multivariate correlation. In the 

context of model selection, Bayesian information criterion (BIC) provides a means for 

selecting the best model from a set of candidate models when addressing the issue of 

over-fitting in regression. Given two candidate models, the model with the lower value of 

BIC is the one to be preferred (25) 

Palm and coworkers (19) found a good correlation between dynamic surface 

properties of the -receptor blocking agents and their permeability coefficients in 

monolayers of human intestinal epithelial Caco-2 cells. This finding indicated that the 

dynamic polar surface area is an important factor in passive transcellular transport across 

cell membranes. Waterbeemd and Camenisch (18) investigated a number of different 

calculated molecular size and hydrogen-bonding descriptors with respect to membrane 

permeation. A linear combination of suitable molecular size and hydrogen bonding was 

found to provide reasonable estimates of permeability by multiple linear or partial least 

squares regression. Hou et al. (20) included 100 drug molecules with various descriptor 

sets to generate models with coefficient of determination R
2
 ranging from 0.1 to 0.72. 

The authors identified that Caco-2 permeation depends primarily on distribution 

coefficient (logD), highly-charged polar surface areas and the radius of gyration. 
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2.1.6. The Bayesian approach and Markov Chain Monte Carlo simulation 

As with other approaches to statistics, the object of analyzing data is to make 

inferences about some unknown parameters. In the Bayesian approach, inference is a 

process of learning from data (26). In this process, prior information is incorporated, then 

observations are made and the prior knowledge is updated to create posterior information. 

Both the prior and posterior knowledge in the Bayesian framework are described as 

probability distributions. The aim of Bayesian analysis is to obtain the posterior 

distribution of the parameter of interest instead of a point estimate. The basic tool of the 

Bayesian approach is Bayes’ theorem, which is the formula for deriving the posterior 

distribution. It can be simply expressed as: 

p(θ|y)~p(θ) × p(y|θ) 

In which, p(|y) is the posterior density, whereas p() is the prior density. The 

other term, p(y|θ ), is the probability distribution for the data, conditional on the 

parameter , and is referred to as the likelihood function. If the observed data is normally 

distributed, a likelihood function can be expressed in Equation 2.8: 

L(yi|fi ,σi
2) = ∏

1

σi√2π

n

i=1

exp (−
(yi − fi )2

2σi
2 ) 

In this equation, yi is observed data, fi is predicted value for a specific model, and n is the 

number of observations. The variance i
2
 of the error in the data can be constant (

2
) 

(homoscedatic) or can be treated as heteroscedatic by multiplicative and additive error 

models. 

The theorem states that the posterior density is proportional to the product of the 

prior density and the likelihood. In the Bayesian approach, the posterior combines 

information in both a priori knowledge from literature and information in experimental 

data. This results in the posterior distribution for a specific parameter that leverages both 

prior knowledge and observation, thereby providing a narrower range of possible values 

(Eq.2.8) 



www.manaraa.com

53 
 
 

for θ (26).  

Typically, the Markov chain Monte Carlo (MCMC) method is used to make 

inferences about model parameters and to make predictions. MCMC is based on drawing 

values for parameter  (Monte Carlo) from approximate distributions and then adjusting 

the random selections to better approximate the target posterior distribution p(|y) via 

Markov chains (27). The Metropolis-Hastings algorithm is useful for drawing samples 

from Bayesian posterior distributions. This algorithm is an adaption of a random walk 

that uses an acceptance/rejection rule to converge to a specified target distribution (27). 

Generally, model parameters are assigned initial values by random sampling from prior 

distribution or may be based on maximum likelihood estimate. When the Metropolis-

Hastings algorithm is used, each component k of the parameter vector  is updated at 

each iteration step according to an acceptance/rejection rule. The algorithm usually 

requires several thousand iterations. The MCMC inputs require observed data, a model 

for data prediction, a likelihood function, prior distributions and initial values for model 

parameters.  

Proof of convergence to a target distribution can be assessed by convergence 

diagnostics, such as history plots. A history plot shows the trajectories of sampler output 

for each model parameter from every iteration. It can quickly reveal failure or success of 

MCMC samplers to reach the target distribution. In general practice, the initial iterations 

which are the first half of the iteration sequence need to be discarded so that the 

remaining samples are drawn from a distribution close enough to the true stationary 

distribution to be usable for estimation and inference (27). 

2.1.7. Data analysis in R using deSolve and FME packages  

R is an open source data analysis system which has been widely used (28). In R, 

'deSolve' is an add-on package for solving a system of differential equations (29). A 

system of ordinary differential equations was formulated as the mathematical description 



www.manaraa.com

54 
 
 

of PBPK models and solved by numerical integration using deSolve’s integration 

function ode.  

Another package used for PBPK model development is FME (30). FME is an R- 

package that contains functions to run complex applications of models, such as parameter 

estimation, sensitivity and Monte Carlo analysis. It can be applied to perform global 

sensitivity analysis to investigate the impact of parameter variation on model outputs. It 

can run the MCMC to estimate parameter uncertainties. The function modMCMC is used to 

run a MCMC by implementing the delayed rejection-adaptive Metropolis algorithm. 

2.2.Materials and Methods 

2.2.1 Materials 

Aniline (Lot # 68396APV), p-chloroaniline (PCA) (Lot # 12131JJV), 2,6-

dimethylaniline (DMA) (Lot# STBB2839V), o-toluidine (o-TOL) (Lot# MKBL4145V), 

p-aminophenol (PAP) (Lot # SZBB2860V), and aniline metabolites  which are 2-

aminophenol (2-AP) (Lot # 2107X), 3-aminophenol (3-AP) (Lot # 02922PA) and 

acetaminophen (APAP)) were purchased from Sigma-Aldrich (USA). Methanol 

(chromatographic grade), acetonitrile, potassium phosphate monobasic and dibasic 

(analytical grade) were purchased from Fisher Scientific (New Jersey, USA). Sprague 

Dawley rat liver microsomes, NADPH regenerating system solution A (26 mM NADP
+
, 

66 mM glucose-6-phosphate, and 66 mM MgCl2 in H2O) (Lot # 29850) & solution B (40 

U/mL glucose-6-phosphate dehydrogenase in 5 mM sodium citrate) (Lot # 28594), 

potassium phosphate (0.5M, pH 7.4) (Lot # 28589) were obtained from BD Biosciences 

(Massachusetts, USA). Cryopreserved Sprague-Dawley rat and Rodent Hepatocyte 

Isolation Kits were purchased from Xenotech LLC (Lenexa, KS). Rat plasma and blood 

(Sprague Dawley) were purchased from Bioreclamation LLC (New York, USA). 

2.2.2. Physiological and physicochemical parameters  

Physiological parameters 
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Reported organ tissue volumes and blood flows for each organ were incorporated 

into differential equations that describe the fate of a compound within a specific tissue. 

These parameters were obtained from the literature for a 250 g rat, a 60 kg adult healthy 

woman and a 70 kg man. Organ volumes in the rat were taken from Brown and 

colleagues (2), except for adipose tissue (31), bone (32) and artery and vein blood 

volumes (33). Blood flows in rat were taken from Brown et al. (2) and Delp et al. (31) 

and other sources (33-35). The mean value of cardiac output in rats was reported as 110.4 

± 15.60 (ml/min) (2). Physiological parameters in rats were presented in Table 2.1. 

Table 2.1- Physiological parameters for rats 

Organ 

Organ weight 
a
 

(% body weight) 
Blood flow 

e
  

(% of cardiac output) 

Mean SD Mean SD 

Adipose Tissue 5.55
b 

0.18
b 1.03

f 
0.2

f 

Bone 4.77
c 

0.17
c 12.2 1.1 

Brain 0.57 0.14 2.0 0.3 

Stomach 0.46 0.06 1.8
g 

0.5
g 

Gut 2.24 0.39 11.6
h 

1.7
h 

Heart 0.33 0.04 4.9 0.1 

Kidneys 0.73 0.11 14.1 1.9 

Liver 3.66 0.65 18.3 - 

Lungs 0.50 0.09 2.1 0.4 

Muscle 40.43 7.17 27.8 2.9 

Pancreas 0.32 0.07 0.8
i 

0.5
i 

Skin 19.03 2.62 5.8 0.62 

Spleen 0.20 0.05 1.0 0.6 

Thyroid 0.005 0.002 1.0 - 

Artery 2.24
d 

-   

Vein 4.52
d 

-   

a
 Organ volumes in the rat were taken from Brown et al. (2) . b 

Volume of adipose tissue from Delp et al. (31). c Volume of bone 

from MacPherson (32). d Artery and vein blood volumes from 

Bernareggi et al. (33). e Blood flows in rat were taken from Brown et 

al. (2). f,h Blood flow of adipose and gut were taken from Delp et al. 

(31). g Stomach blood flow was from Idvall (34). Pancreas blood flow 

was taken from Sasaki (35). 
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The mean values and standard deviations of organ weights (percent of body 

weight) for adult healthy males (70 kg) and females (60 kg) were taken from ICRP 

Publication 89 (1) and de la Grandmaison et al. (36) (Table 2.2). The blood flow rates for 

human model were obtained from ICRP Publication 89 (1). Adults are generally 

considered to be in the age range of 20–50 years and the reference values were obtained 

from Western Europeans and North American populations. 

 

Table 2.2- Organ weight (percent of body weight - % BW) and blood flow rate (percent 
of cardiac output - % CO) for human males and females 

Organ 

Males 
a 

Females 
a 

Organ weight  
(% BW) 

Blood Flow 
(% CO) 

Organ weight  
(% BW) 

Blood Flow 
(% CO) 

Mean SD Mean Mean SD Mean 

Heart 0.54 0.10 4.3 0.54 0.13 5.3 

Left lung 0.86 0.32 100 0.81 0.30 100 

Right lung 0.98 0.35 100 0.94 0.36 100 

Spleen 0.23 0.13 3.2 0.24 0.13 3.2 

Thymus 0.04 0.02 1.6 0.03 0.02 1.6 

Liver 2.47 0.58 27.2 2.54 0.62 29.5 

Kidney 0.44 0.11 20.1 0.45 0.13 18.3 

Stomach 0.21 0.06 1.1 0.23 0.03 1.1 

Small Intestine 0.89 0.11 10.6 1.00 0.12 11.8 

Large Intestine 0.51 0.10 4.3 0.60 0.08 5.3 

Pancreas 
b 

0.21 0.06 1.1 0.21 0.06 1.1 

Vein 5.11 - 100 4.56 - 100 

Artery 2.56 - 100 2.28 - 100 

Adipose 20.00 - 5.3 30.00 - 9.1 

Muscle 39.70 - 18.1 29.20 - 12.8 

Skin 4.52 - 5.3 3.83 - 5.3 

Brain 1.99 - 12.8 2.17 - 12.8 

Bone 14.38 - 5.3 13.00 - 5.3 

Hepatic Artery - - 6.9 - - 7 
a
 Values from ICRP Publication 89 (1)  

b
 Pancreas weight for males and females were from de la Grandmaison et al. (36). 

 



www.manaraa.com

57 
 
 

The fractional volumes for vascular space and interstitial fluid were obtained from 

the literature (37) and displayed in Table 2.3. As common assumption used in Rodger and 

Rowland approach, (38) for each tissue, these fractional volumes measured in rats were 

assumed to be the same as those in humans.  

Table 2.3- Fractional volume of vascular 
and interstitial space in various organs of 

mammals (37) 

Name Vascular Interstitial space 

Adipose 0.010 0.135 

Muscle 0.026 0.120 

Skin 0.019 0.302 

Brain 0.037 0.004 

Heart 0.262 0.100 

Lung 0.262 0.188 

Pancreas 0.180 0.120 

Spleen 0.282 0.150 

Bone 0.041 0.100 

Thymus 0.030 0.150 

Liver 0.115 0.163 

Kidney 0.105 0.200 

Stomach 0.032 0.100 

Gut 0.024 0.094 

Other physiological parameters, such as gastric emptying rate, small intestine 

transit rate, pH of the gastrointestinal compartments and radius of small intestine were 

obtained from Peters (39). 

The primary factors controlling the distribution of drug between blood and tissues 

are plasma protein, extracellular water, intracellular water, acidic phospholipids, neutral 

lipids and neutral phospholipids (8). In order to predict tissue-to-plasma partition 

coefficients in rats and humans using Equation 2.7, the residual blood adjusted rat tissue 

composition data were taken from literature for both species (8, 9, 40, 41). Tissue 

composition parameters for rats are shown in Table 2.4.  
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Physicochemical parameters 

Aniline, o-toluidine, p-chloroaniline and 2,6-dimethylaniline are aromatic amines 

and act as weak bases in aqueous solution. 4-Aminophenol is amphoteric with both 

aromatic amine and phenolic hydroxyl groups. The acidity of the hydroxyl function is 

depressed by the presence of an amino group on the benzene ring and the amino group 

behaves as a weak base. The physicochemical parameters such as pKa and logP values 

are necessary for the prediction of tissue to plasma partition coefficients using Equation 

2.7. The experimental pKa values (25ºC) of model compounds determined using 

potentiometric or spectrophotometric methods were taken from literature (Table 2.5).  

Table 2.5- pKa and logPo/w of model compounds 

Compound pKa ± SD (reference) logPo/w (reference) 

Aniline 

4.596 ± 0.002 (42); 4.72 ± 0.02 

(43); 4.62 ± 0.003 (44) 4.56 
(45); 4.58 (46, 47); 4.6(48); 4.62 

(49, 50); 4.63 (51) 

0.90 (52); 0.94 ± 0.006 (53); 
0.90 (54); 0.98 (54); 0.90 ± 

0.01 (55) 

p-Chloroaniline 3.98 (47, 48); 4.05 (56) 1.88 ± 0.014 (53); 1.83 (54) 

2,6-Dimethylaniline 3.91 ± 0.05 (44); 3.95 (57) 1.815 (60) 

o-Toluidine 
4.447 ± 0.001 (42); 4.45 ± 0.03 
(44); 4.39 (58); 4.45 (48); 4.53 

(56) 
1.29 (54), 1.32 (54) 

p-Aminophenol 
5.65 (56); 5.5 (47); 5.48 (59); 

10.46 (60) 
0.04 (54) 

2.2.3. Tissue-plasma partition coefficients  

In order to predict the venous blood drug concentration leaving a tissue, the 

partition coefficient of drug between the tissue and blood (Kpu) needs to be estimated. 

The mechanistic tissue composition-based equation (Eq. 2.7) for acids, very weak bases, 

neutral compounds, and some zwitterions from the model of Rodgers and Rowland (52) 

was utilized to predict the Kpu values for model compounds. The assumption of passive 

drug distribution is reasonable based on based on the absence of evidence for specific 
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transporters (61). The Kpu values in rats and humans were estimated for 14 tissues 

(adipose, bone, brain, gut, heart, kidney, liver, lung, muscle, pancreas, skin, spleen, 

stomach and thymus) using residual blood adjusted rat tissue composition data for both 

species along with fraction unbound in plasma and blood to plasma ratio values. Blood to 

plasma ratio of aniline in rats was obtained from literature (62, 63), which is equal to 1. 

Other model compounds (such as PCA, o-TOL, 2,6-DMA and PAP) were assumed to 

distribute equally in plasma and erythrocytes. 

LogPvo/w was calculated from logPo/w using the following relationship based on a 

linear regression analysis obtained between experimental data on logPvo/w
 
and logPo/w of 

several organic chemicals including weak acids, bases and unchanged molecules (64) 

 LogPvo/w = 1.115 × LogPo/w − 1.35    (n = 104, r = 0.99)       (Eq.2.9) 

 The predictions of tissue-to-plasma partition coefficients were used to determine 

whole body unbound volume of distribution at steady state in rats and humans (Vdu,ss). 

The Vdu,ss values were computed by inserting the appropriate Kpu values into equation 

2.10 and converted into L/kg by dividing by 250 g in rats and 70 kg in humans.  

Vdu,ss =
Vplasma

fup
+

VRBC

fup
×

KB/P−(1−H)

H
+ ∑ Vi. Kpuitissues       (Eq.2.10) 

Vdu,ss refers to unbound volume of distribution at steady state which is in 

equilibrium between unbound concentration in plasma and tissues. Vplasma, VRBC and Vi 

are volume of plasma, erythrocyte and i
th

 tissue, respectively. KB/P and H are blood to 

plasma ratio and hematocrit value. Kpui is i
th

 unbound tissue-to-plasma partition 

coefficient.  

2.2.4. Metabolic rate constants 

In order to parameterize metabolic clearance in rat PBPK model, the maximal 

velocity (Vmax) and Michaelis constant (Km) values were determined by measuring the 

rate of substrate depletion in in vitro metabolizing systems.  



www.manaraa.com

61 
 
 

Substrate depletion in rat liver microsomes 

Aniline was reported to be mainly metabolized in liver, by acetylation and 

hydroxylation pathway (65). The hydroxylation by CYP 450 is major pathway of aniline 

metabolism and aminophenol is major metabolite of aniline. Therefore, pooled rat liver 

microsomes were used to investigate the metabolic kinetics of substituted anilines. 

General incubation conditions and sample treatment: Substrate was incubated 

with 100 mM potassium phosphate buffer pH 7.4 and NADPH-generating system in a 

shaking water bath at 37ºC. After thawing microsomes, the reaction was initiated with the 

addition of 25 µL microsomes giving a final incubation volume of 1mL and 0.5 mg/mL 

microsome concentration. At times of zero, 10, 20, 30, 40, 50, 60 minutes, aliquots (0.12 

mL) were removed and quenched with the addition of 0.12 mL ice-cold methanol. The 

sample tubes were centrifuged for 5 minutes at 10,000 g, and the supernatant was 

pipetted into HPLC vials for analysis. Substrate depletion experiments were conducted at 

5 or 6 substrate concentrations in triplicate. Concentration ranges used for each model 

compound were as following: aniline, 10 to 1000 µM; PAP, 2 to 2000 µM; 2,6-DMA, 10 

to 1000 µM; o-TOL, 3 to 1250 µM. 

Substrate depletion in rat hepatocytes 

p-Aminophenol has been reported to be mainly converted by human hepatocytes 

to sulfate and glucuronic acid conjugates of both APAP and PAP (66). Therefore, 

hepatocytes were chosen to investigate enzyme kinetics of PAP and obtain the depletion 

profiles of PAP. 

Cryopreserved rat hepatocytes and hepatocyte isolation kits were purchased from 

XenoTech LLC (Lenexa, KS); the cells were stored in the vapor phase of liquid nitrogen 

until use. Immediately before use, vials of hepatocytes were rapidly thawed in a shaking 

water bath (37°C; 1 – 1.5 min) or until the frozen cell pellet move freely when the 

cryotube was inverted. In a biological cabinet, the frozen pellet containing the 
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hepatocytes was slowly transferred to the 30% isotonic Percoll solution (Tube A of the 

Rodent Hepatocyte Isolation Kits). The tube was inverted horizontally and mixed until 

the pellet was completely suspended in the solution. The hepatocytes were isolated via 

centrifugation using Eppendorf centrifuge rotor 5810 R at 100g for 5 minutes at room 

temperature. The supernatant was removed and the pellet of hepatocytes was resuspended 

by gentle inversion in prewarmed Hepatocyte Incubation Media (Waymouth’s media, pH 

7.4; 1–2 ml). The cell number and viability were determined by the trypan blue exclusion 

assay (67) prior to substrate incubations. 

Stock solutions of PAP were prepared freshly in methanol and diluted with 

Hepatocyte Incubation Media. The initial PAP concentration was twice the desired final 

concentration in reaction mixture. The initial substrate concentration range was 500 to 

3000 µM. In a microcentrifuge tube, 500 µL of PAP in media was added and 

preincubated in the shaking water bath at 37°C, gassed with the mixture of 95% O2 and 

5% CO2 for 5 min. The reaction was initiated by adding 500 µL of hepatocyte suspension 

(final concentration 1x10
6
 cells/mL). After incubation at 37°C for various time periods, 

the metabolism of PAP were quenched by the addition of acetonitrile. The quenched 

reaction mixtures were centrifuged at 10,000g for 5 min, and an aliquot of the supernatant 

was injected into an HPLC for measuring the unchanged compound concentration. 

Assays were performed in triplicate depending on cell availability. 

Analytical Assays 

HPLC methods for the measurement of unchanged model compound 

concentrations in liver microsomes, hepatocytes after centrifugation to precipitate protein 

were developed. Samples were analyzed by a Thermo Spectrum HPLC System (P4000 

pump, AS3000 auto injector, and UV 6000 LP photodiode array detection system). 

Chromatographic data were analyzed and stored using PC1000 chromatography data 

system software. The elution of aniline, PCA, 2,6-DMA, and o-TOL was accomplished 
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using a 4.6x150 mm Symmetry C18 5 µm column (Waters Corporation).  PAP was 

eluted using an XBridge
TM

 C18 5µm 4.6x150 mm column (Waters Corporation). 

Analytical wavelength used was 230 nm, flow rate was 1 ml/min. The mobile phase for 

the analysis of each model compound is listed in the following Table 2.6. 

Table 2.6- Mobile phase for each model compound  

Compound Mobile phase 

Aniline methanol: phosphate buffer 5 mM pH 7.4 (25:75) 

PCA methanol: phosphate buffer 10 pH 7.4 (40:60) 

2,6-DMA methanol: phosphate buffer 10 mM pH 7.4 (40:60) 

o-TOL methanol: phosphate buffer 10 mM pH 7.4 (40:60) 

PAP acetonitrile: phosphate buffer 25 pH 7.4 (5:95) 

Method validation 

To determine system suitability, a stock solution of aniline and its major 

metabolites (2-AP, 3-AP, PAP, and acetaminophen) was prepared in 50 mL of methanol. 

The stock solution was then diluted with mobile phase for system suitability standards. 

The separation of aniline and metabolites was accomplished using a 150 mm Symmetry 

C18 5 µm column (Waters Corporation), using a flow rate of 1.0 ml/min with methanol: 

phosphate buffer 5mM pH 7.4 (25:75) as mobile phase. System suitability was 

determined from six replicate injections of the standards before sample analysis. 

Analytical parameters including theoretical plates, asymmetry and resolution between 

aniline and other metabolites were evaluated. Three acceptance criteria for aniline were 

peak area RSD  2%, column plates > 2000 and asymmetry value < 3. The results were 

used to monitor critical operational parameters of the chromatographic system to confirm 

that the resolution and precision were adequate for sample analysis. 

To assess linearity of the analytical method for aniline, standard calibration curves 

were prepared using substrate solutions with concentrations range of 5 – 1500 µM. The 

peak areas versus concentrations were evaluated using linear regression analysis. 
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Analytical methods for the other model compounds were carried out using the 

same procedure except the analytical concentration ranges were adjusted based on the 

initial concentration ranges used in the substrate depletion studies (as described above). 

Data Analysis 

Enzyme kinetic parameters (Vmax, Km) were estimated by fitting the Michaelis-

Menten equation to all depletion curves simultaneously with Bayesian parameter 

estimation via MCMC sampling. The starting values for Vmax and Km were obtained from 

nonlinear least square estimates by fitting the Michaelis-Menten equation to initial rates 

versus substrate concentrations using nonlinear regression. The prior distributions for the 

metabolic parameters were non-informative which expresses negligible prior knowledge 

relative to the data. The MCMC simulation using the Metropolis-Hastings algorithm was 

performed using software R and the FME package. In the MCMC process, 10,000 

iterations were run for convergence and 50,000 iterations were burned-in to make 

inference. The protein content in micrososmes was determined based on the manufacturer 

information of material supply. 

After the MCMC sampler converged, the posterior distributions of Vmax and Km 

were used to estimate the mean and 95% confidence intervals of the initial reaction 

velocities based on Michaelis-Menten model predictions. The observed and predicted 

metabolic rates were compared to evaluate model structure and reliability. 

2.2.5. Microsomal and plasma protein binding 

Microsomal and plasma protein unbound fractions were measured using 

ultrafiltration techniques. The determination of microsomal binding was necessary to 

correct the Michaelis constant, Km, for the fraction of drug concentration unbound in 

metabolic assay using liver microsomes. Plasma protein binding was used as input 

parameter for tissue to plasma partition coefficient prediction using the tissue 

composition-based equation (Eq. 2.7). 
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General procedure: Protein binding was determined in the Sprague Dawley rat 

microsomal incubation media (BD Biosciences) by an ultrafiltration method. Stock 

solutions of substrates were added to rat microsomes suspended in 0.1 M potassium 

phosphate buffer, pH 7.4 (0.5 mg/mL microsomal protein) at 37ºC in shaking water bath 

to give final concentrations containing less than 1% methanol (v/v). After 20 min of 

equilibration, aliquots (1 mL, in triplicate) of these samples were added to ultrafiltration 

tubes (Centrifree, Millipore). Then 100 µL of samples were withdrawn and centrifuged at 

10,000 g for 5 min (Eppendorf) to measure the actual total concentration added into the 

incubation mixture. The remaining medium in tubes was separated from proteins and 

other cellular material by centrifugation at 1000 g, 37ºC for 30 min. The filtrate was 

analyzed by HPLC-UV to measure the unbound drug concentration. To evaluate the 

nonspecific binding to the ultrafiltration tube, concentrations of compounds were 

measured in filtered and unfiltered 0.1 M potassium phosphate buffer, pH 7.4. Fraction 

unbound of unbound substrate to microsomes was then calculated with correction of 

nonspecific binding to ultrafiltration tube. The experiment was conducted at 3 to 5 

substrate concentrations. 

The fraction of substrate unbound to plasma protein was determined using similar 

procedure wherein plasma was substituted for microsomes as a source of substrate 

binding. Frozen plasma was thawed at room temperature and then centrifuged in 5 min at 

2000 g (Eppendorf) to remove fibrous precipitate. Defrosted plasma was measured and 

adjusted pH to 7.4 by adding small amounts of sodium phosphate dibasic. Stock solutions 

were added to plasma in microcentrifuge tube, mixed and incubated at 37ºC for 20 min in 

shaking water bath. After incubation, a 1 mL aliquot was added to ultrafiltration tubes 

and the free fraction was separated and analyzed as above. The total substrate 

concentration added into the plasma incubation was computed from stock solutions 

instead of measuring. 
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The concentration ranges for individual substrates were as follows: aniline, 2 – 

1000 µM; PCA, 10 – 2000 µM; 2,6-DMA, 20 – 1000 µM, o-TOL, 20 – 1000 µM; PAP, 

10 – 3000 µM. 

The filtrate of each model compound was analyzed by HPLC-UV with the 

chromatographic conditions similar to those for the metabolic assays described above. 

The fraction unbound was calculated by dividing the substrate concentration after 

filtration ([Cu]), corrected for nonspecific binding to ultrafiltration device (fudevice) , with 

total substrate concentration [C] (Equation 2.11): 

fup =
[Cu]

[C]total×fudevice
      (Eq. 2.11) 

2.2.6. Effective intestinal permeability 

The jejunal effective permeability (logPeff) of model compounds for absorption 

rate calculation was estimated using QSAR method wherein two correlations were used 

to estimate in vivo permeability from molecular properties of the individual model 

compounds. The first correlation was used to establish a relationship between molecular 

descriptors and Caco-2 permeability.  A second correlation model was then developed to 

relate Caco-2 permeability to in vivo permeability. The specific procedures are described 

below: 

Correlation of Caco-2 permeation with molecular properties 

The first correlation was developed for Caco-2 cell permeability (logPapp) and 

molecular descriptors using multivariate regression analysis. A set of 22 structurally-

related aromatic amines which contain one benzene ring were selected to build the model. 

The compounds included aspirin, alprenolol, aminopyrine, atenolol, clonidine, dopamine, 

ibuprofen, ephedrine, metopropol, hydroquinone, oxeprenolol, practolol, salicylic acid, 

terbutaline, acetaminophen, procaine, amphetamine, ethionamide, acebutolol, guanabenz, 

epinephrine and lidocaine. For each compound, two sets of data were compiled: the 
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molecular descriptors including topological indices, structural keys, E-state indices 

obtained from the Molecular Operating Environment (MOE) software (68) and literature 

reported Caco-2 cell permeabilities. A list of the molecular descriptors is tabulated in 

Table 2.7. 

Table 2.7- Code of molecular descriptors considered in the Caco-2 
cell model 

Code Description 

b_rotR Fraction of rotatable bonds 

rgyr Radius of gyration. 

a_acc Number of hydrogen bond acceptor atoms 

a_don Number of hydrogen bond donor atoms 

E_sol Solvation energy 

E_tor Torsion (proper and improper) potential energy 

E_vdw van der Waals component of the potential energy 

VSA van der Waals surface area 

TPSA Topological polar surface area 

apol Sum of the atomic polarizabilities 

SMR Molecular refractivity 

logS Log of solubility 

logP(o/w) Log of the octanol/water partition coefficient 

MW Molecular weight 

Caco-2 permeability values were obtained from literature (20, 21, 69-71). Most of 

the Caco-2 values were taken from Hou et al. (20) and presented as mean values obtained 

from various literature sources. The molecular descriptors and Caco-2 permeabilities for 

all compounds are shown in Table 2.8. 
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The entire data set of the compounds was randomly divided into a training set of 

17 compounds and a test set of 5 compounds. From the training set, all combinations of 

molecular descriptors were investigated using multiple-linear regression. The best model 

was selected based on the BIC criterion. The reliability of the model was assessed by 

using the test set of compounds wherein the Caco-2 permeability values were compared 

to the model predicted values. The model was deemed to be reliable if the predicted 

values were overall within 0.5 log limits. After being evaluated for its reliability, the 

model for Caco-2 permeability prediction was used to predict apparent Caco-2 

permeability coefficients for model drug degradants.  

Conversion of apparent Caco-2 permeability to in vivo permeability  

The estimates of Caco-2 permeability were then converted to in vivo permeability 

(logPeff) using a second model that was developed by linear regression to correlate Caco-

2 permeability to measured human jejunum permeability. Human logPeff data based on 

direct, in vivo determinations in the human GI tract with a single pass perfusion were 

available for a few compounds, which served as the basis for model construction. Caco-2 

permeability and human logPeff values were obtained from Alsenz (72) in Table 2.9. 

Table 2.9- Reported human logPeff and Caco-2 cell permeability (72) 

Compound 
Peff

 
human perfusion 

(10
-4 

cm/s) 
Papp (10

-6
 cm/s) 

(pH 7.4 donor) 

Antipyrine 4.50 54.30 (±2.98) 

Atenolol 0.20 1.730 (±0.66) 

Carbamazepine 4.30 62.23 (±3.98) 

Cimetidine 0.30 0.590 (±0.35) 

Creatinine 0.30 1.550 (±0.72) 

Desipramine 4.40 43.00 (±2.01) 

Enalaprilat 0.20 1.850 (±0.79) 

Furosemide 0.05 0.310 (±0.09) 

Hydrochlorothiazide 0.04 0.420 (±0.33) 

Ketoprofen 8.40 24.36 (±1.82) 
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Table 2.10- Continued 

Compound 
Peff

 
human perfusion 

(10
-4 

cm/s) 

Papp (10
-6

 cm/s) 

(pH 7.4 donor) 

L-Leucine 6.20 15.50 (±1.68) 

Lisinopril 0.33 1.270 (±0.83) 

Naproxen 8.30 53.07 (±2.91) 

PEG400 0.56 3.120 (±1.53) 

Phenoxymethylpenicillin 0.26 1.900 (±1.19) 

Phenylalanine 3.40 18.34 (±3.16) 

Piroxicam 7.80 28.85 (±2.81) 

Propranolol 2.90 47.20 (±2.56) 

Ranitidine 0.27 0.670 (±0.39) 

Terbutaline 0.30 1.710 (±0.79) 

Urea 1.40 4.820 (±1.12) 

Verapamil 6.70 44.67(±3.61) 

 

2.3.Results 

2.3.1. Tissue-to-plasma partition coefficients  

 The estimated tissue-to-plasma partition coefficient values for rats and humans 

are presented in Table 2.10. As a small molecule with low lipophilicity, aniline 

distributes equally between tissues and plasma with most of Kpu values close to 1. The 

PCA and 2,6-DMA Kpu values suggest that these compounds are predicted to partition to 

greater extent into adipose (4.603 and 4.366, respectively) or brain (3.615 and 3.450, 

respectively) compared to bone tissue (1.986 and 1.791, respectively) as expected. PAP 

has a greater extent of binding to plasma proteins; which results in smaller volume of 

distribution. Overall, PCA and 2,6-DMA area predicted to have about 2-fold higher tissue 

affinity values than aniline, therefore they have larger volumes of distribution. For 

example, the aniline Vdu,SS values were 0.72 L/kg in both rats and humans. For PCA, the 

volumes of distribution estimated in rats and humans were 2.40 L/kg and 2.74 L/kg, 

respectively. For 2,6-DMA, the volumes of distribution estimated in rats and humans 

were 2.16 L/kg and 2.42 L/kg. 
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Table 2.11- Tissue-to-plasma partition coefficients predicted 
using the Eq. 2.7 from model of Rodgers and Rowland 

Organ/Tissue Aniline PCA 2,6-DMA o-TOL PAP 

Adipose 0.555 4.603 4.366 1.255 0.213 

Bone 0.602 1.986 1.791 0.857 0.508 

Brain 1.106 3.615 3.450 1.584 0.854 

Gut 1.114 4.073 3.736 1.666 0.874 

Heart 0.936 2.429 2.150 1.205 0.864 

Kidney 0.943 2.507 2.263 1.229 0.848 

Liver 0.927 2.430 2.250 1.206 0.813 

Lung 1.017 3.193 2.810 1.412 0.900 

Muscle 0.859 1.787 1.660 1.030 0.800 

Pancreas 1.142 3.895 3.704 1.666 0.870 

Skin 1.201 5.755 5.188 2.047 0.844 

Spleen 0.888 1.811 1.638 1.055 0.849 

Thymus 0.949 2.352 2.192 1.210 0.841 

Stomach 1.026 3.218 2.910 1.430 0.875 

Vdu,ss 

(L/kg) 

Rat 0.72 2.40 2.16 1.08 0.67 

Human 0.72 2.71 2.42 1.09 0.63 

2.3.2. Metabolic rate constants 

Analytical system suitability 

Aniline: The absorbance spectrum of aniline was determined for 0.2 mM aniline 

solution in 0.1M potassium phosphate buffer and shown in Figure 2.1 below. The spectra 

range from 200 nm to 380 nm. The wavelength of maximum absorbance for aniline is 

230 nm.  
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Figure 2.1- Absorbance spectrum of aniline 
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The analytical system suitability was determined by analyzing the chromatograms 

of aniline and its identified metabolites obtained from PC1000 chromatography data 

system software. The estimated analytical system suitability parameters are summarized 

in Table 2.11 and an example of chromatogram is displayed in Figure 2.2.  

Table 2.12- Chromatographic parameters for aniline obtained from PC1000 software 

Parameter Aniline 2-AP 3-AP 4-AP APAP Criteria 

Repeatability - retention 

time (RSD%) 
0.032 0.050 0.048 0.055 0.037 X < 1% 

Repeatability - area 

(RSD%) 
0.625 0.760 0.719 0.787 0.567 X < 1% 

Theoretical plates 5269 3852 3561 2762 3595 N > 2000 

Resolution 4.24 4.34 3.28 NA 2.74 R > 1.5 

Asymetry 1.23 1.52 1.19 1.23 1.16 T < 2 

 

 

 

 

 

 

 

 

The relative standard deviations (RSD) for retention times of aniline and 

metabolites were observed less than 1%. Similarly, the relative standard deviation for 

peak area ranges from 0.57% to 0.78%. Theoretical column plates were greater than 

2000; resolution between aniline and its metabolites was 2.7 as the least value and most 

Figure 2.2- Sample chromatogram  of aniline and its metabolites. Retention times of 4-
AP, 3-AP, 2-AP, acetaminophen and aniline are 4.78, 6.04, 8.04, 9.67, and 12.45, 

respectively. 
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of peak symmetry measures are close to 1. The results were used to verify that the 

resolution and reproducibility of the chromatographic system are adequate for analytical 

studies.  

Linearity of the method was confirmed by preparing standard curves of aniline for 

the analytical range of 5 – 1500 µM. The results, summarized in Tables 2.12, show a 

good correlation between analyte peak area and concentration of aniline within the 

analytical range with R
2
 ≥0.99. Standard curve for aniline used in the microsomal study 

of 150 µM aniline incubation are shown in Figure 2.3. 

PCA; 2,6-DMA, o-TOL and PAP: The analytical system suitability parameters are 

shown in Table 2.13. The representative chromatograms of samples incubated with 

microsomes or hepatocytes after centrifugation are displayed in Figures 2.4 – 2.7, for 

PCA, 2,6-DMA, o-TOL and PAP, respectively. The results of linear regression for 

standard curves of PCA, 2,6-DMA, o-TOL and PAP were shown in Table 2.14, 2.15, 

2.16, and 2.17, respectively. 

Table 2.13- Linearity testing of HPLC analytical system for aniline 

Standard 
curve 

Analytical range Calibrators Slope y-intercept R
2
 value 

Set 1  5 - 15 µM 5 802.6 -27.13 0.990 

Set 2 25 - 125 µM 5 797.8 -670.2 1.00 

Set 3  500 - 1500 µM 5 800.3 15190.2 1.00 

 

 

 

 

 

 

 

Figure 2.3- Standard curve for aniline from 

microsomal study using 150 µM aniline 
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Table 2.14- System suitability parameters for model compounds 

Parameter PCA 2,6-DMA o-TOL PAP Criteria 

Repeatability - retention time (RSD%) 0.06 0.34 0.06 0.02 X < 1% 

Repeatability - area (RSD%) 0.27 0.42 0.68 0.52 X < 1% 

Theoretical plates 6452 7255 5688 2483 N > 2000 

Asymmetry 1.06 1.26 1.30 1.26 T < 2 

 

 

 

 

 

 

 

 

 

Figure 2.5- Chromatogram of 2,6-dimethylaniline from 
microsomal study for metabolic parameters determination 

 

 

 

 

Figure 2.6- Chromatogram of o-toluidine from microsomal study 
for metabolic parameters determination 

Figure 2.4- Chromatogram of p-chloroaniline from microsomal 
study for metabolic parameters determination 
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Table 2.15- Linearity testing of HPLC analytical system for p-chloroaniline 

Standard 
curve 

Analytical range Calibrators Slope y-intercept R
2
 value 

Set 1 10 – 100 µM 5 4047.28 707.82 0.9996 

Set 2 200 – 600 µM 5 2028.43 -588.87 0.9997 

Set 3 1000 – 2000 µM 5 2044.93 -471.67 0.9992 

 

Table 2.16- Linearity testing of HPLC analytical system for 2,6-dimethylaniline 

Standard 
curve Analytical range Calibrators Slope y-intercept R

2
 value 

Set 1 5 – 12 µM 5 31582 4010.4 0.997 

Set 2 375 – 550 µM 5 5090.85 146288.3 0.998 

Set 3 625 – 1250 µM 5 5414.65 118692.1 0.997 

 

Table 2.17- Linearity testing of HPLC analytical system for o-toluidine 

Standard 
curve 

Analytical range Calibrators Slope y-intercept R
2
 value 

Set 1 5 – 12.5 µM 5 21746.4 1085.3 0.999 

Set 2 60 – 125 µM 5 9322.4 -23480.5 0.999 

Set 3 650 – 1300 µM 5 4161.0 62396.2 0.995 

 

Figure 2.7- Chromatogram of p-aminophenol from hepatocyte study 
for metabolic parameters determination 
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Table 2.18- Linearity testing of HPLC analytical system for p-aminophenol 

Standard 
curve 

Analytical range Calibrators Slope y-intercept R
2
 value 

Set 1 10 – 50 µM 5 9076.7 988.9 0.997 

Set 2 100 – 500 µM 5 7847.2 579.7 0.998 

Set 3 2625 – 4200 µM 5 4131.5 18978.4 0.994 

Estimation of initial rates from depletion profiles 

Concentration-time profiles of aniline, PCA, 2,6-DMA, o-TOL and PAP 

depletion in rat liver microsomes and hepatocyte suspension are shown in Figures 2.8 – 

2.12 . In the hepatocyte study of PAP, viability of cells was determined to be 75% - 87% 

for each experiment. 

For each depletion profile, linear regression was used to estimate the initial rate of 

substrate loss for a 20% decrease in concentration. Slopes, standard error of slopes and 

correlation coefficient R
2
 of aniline, PCA, 2,6-DMA, o-TOL and PAP disappearance 

curves obtained by linear regression are shown in Tables 2.18 – 2.22. 
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Figure 2.8- Aniline depletion plots from rat liver microsomal studies. Each “Exp.” 
represents a single study. Points correspond to observed concentrations. 
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Figure 2.9- p-Chloroaniline depletion plots from rat liver microsomal studies. Each 
“Exp.” represents a single study. Points correspond to observed concentrations.  
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Figure 2.10- 2,6-dimethylaniline depletion plots from rat liver microsomal studies. Each 
“Exp.” represents a single study. Points correspond to observed concentrations.  
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Figure 2.11- o-toluidine depletion plots from rat liver microsomal studies. Each “Exp.” 
represents a single study. Points correspond to observed concentrations. 
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Figure 2.12- Depletion plots of PAP using hepatocyte. Each “Exp.” represents a single 

study. Points correspond to observed concentrations 
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Table 2.19- Estimation of initial rate of substrate loss 
(slope) for aniline by linear regression 

Exp. # 

Concentration 

(µM) 

0 

(slope) 

SE of 

Slope R
2
 

1 8.926 0.069 0.0092 0.97 

2 8.405 0.062 0.0023 1.00 

3 9.846 0.064 0.0029 1.00 

4 21.23 0.097 0.0050 0.99 

5 22.43 0.098 0.0077 0.98 

6 23.25 0.099 0.0036 1.00 

7 38.45 0.192 0.0316 0.95 

8 34.03 0.185 0.0186 0.98 

9 43.97 0.217 0.0051 1.00 

10 97.51 0.394 0.0488 0.96 

11 104.5 0.411 0.0417 0.97 

12 104.2 0.414 0.0389 0.97 

13 149.4 0.624 0.0734 0.96 

14 143.6 0.522 0.0683 0.95 

15 1094 1.003 0.0558 0.98 

16 1084 1.144 0.0676 0.98 
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Table 2.20- Estimation of initial rate of substrate loss (slope) 
for p-chloroaniline by linear regression 

Exp. # 
Concentration 

(µM) 
0 

(slope) 
SE of 
Slope R

2
 

1 1.090 0.018 0.000 1.00 

2 0.976 0.020 0.006 0.92 

3 1.026 0.013 0.000 1.00 

4 103.3 0.333 0.020 0.99 

5 91.83 0.275 0.025 0.98 

6 109.1 0.320 0.016 0.99 

7 977.5 1.849 0.288 0.89 

8 997.1 1.736 0.150 0.98 

9 887.6 1.502 0.062 0.99 

10 583.7 1.016 0.016 1.00 

11 572.6 1.173 0.091 0.97 

12 558.7 1.226 0.212 0.97 

13 1415 2.020 0.079 0.99 

14 1414 1.926 0.204 0.96 

15 1593 2.002 0.177 0.97 

16 2188 2.099 0.127 0.98 

17 1954 2.087 0.138 0.98 

18 2109 2.154 0.142 0.98 

19 49.74 0.225 0.017 0.98 

20 46.40 0.188 0.013 0.98 

21 45.81 0.183 0.016 0.98 
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Table 2.21- Estimation of initial rate of substrate loss 
(slope) for 2,6-dimethylaniline by linear regression 

Exp. # 
Concentration 

(µM) 
0 

(slope) 
SE of 
Slope R

2
 

1 8.524 0.052 0.012 0.95 

2 8.424 0.056 0.004 0.99 

3 8.574 0.036 0.001 1.00 

4 47.65 0.246 0.007 1.00 

5 47.74 0.283 0.003 1.00 

6 45.11 0.293 0.014 0.99 

7 97.79 0.386 0.019 0.99 

8 101.4 0.519 0.011 1.00 

9 100.1 0.430 0.013 1.00 

10 279.0 0.878 0.046 0.99 

11 241.8 0.822 0.036 1.00 

12 282.3 0.898 0.044 1.00 

13 467.8 1.256 0.076 0.99 

14 424.7 1.091 0.092 0.98 

15 487.8 1.134 0.043 0.99 

16 887.4 1.545 0.177 0.95 

17 945.7 1.525 0.192 0.94 

18 924.4 1.507 0.138 0.97 
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Table 2.22- Estimation of initial rate of substrate loss 
(slope) for o-toluidine by linear regression 

Exp. # 
Concentration 

(µM) 
0 

(slope) 
SE of 
Slope R

2
 

1 2.612 0.024 0.007 0.91 

2 3.950 0.029 0.008 0.93 

3 3.911 0.027 0.001 1.00 

4 21.37 0.095 0.011 0.97 

5 34.75 0.138 0.034 0.94 

6 32.05 0.123 0.028 0.91 

7 640.8 1.234 0.183 0.94 

8 653.4 1.470 0.298 0.89 

9 593.5 1.159 0.105 0.96 

10 101.1 0.258 0.013 0.99 

11 101.0 0.313 0.015 1.00 

12 96.30 0.321 0.032 0.98 

13 1246 1.408 0.427 0.69 

14 1182 1.722 0.285 0.90 

15 1247 1.973 0.443 0.80 

16 299.3 0.755 0.113 0.96 

17 288.3 0.718 0.248 0.81 

18 298.8 0.544 0.074 0.95 
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Table 2.23- Estimation of initial rate of substrate loss (slope) for p-
aminophenol by linear regression 

Exp. # 
Concentration 

(µM) 0 (slope) SE of Slope R
2
 

1 429.7 2.393 0.042 1.00 

2 442.7 2.544 0.283 0.99 

3 438.2 2.610 0.225 0.99 

4 1004 5.610 0.375 0.99 

5 991.0 5.835 0.397 0.99 

6 953.4 5.923 0.649 0.98 

7 1507 6.521 0.700 0.98 

8 1504 6.824 0.590 0.96 

9 1459 7.730 0.993 0.97 

10 1869 9.084 0.596 0.99 

11 1839 10.00 1.450 0.96 

12 2713 11.65 1.705 0.92 

13 2504 9.503 1.428 0.92 

14 2758 11.04 2.411 0.87 

15 2593 11.58 2.029 0.89 

16 562.1 2.607 0.594 0.95 

17 587.9 3.112 0.663 0.96 

18 3535 12.85 1.385 0.96 

19 3841 12.44 1.121 0.97 

20 49.31 0.151 0.002 1.00 

21 44.45 0.246 0.168 0.68 

22 57.75 0.421 0.139 0.82 

Estimation of Vmax and Km by nonlinear regression 

 Optimal Vmax and Km values of model compounds were estimated by fitting the 

Michaelis-Menten equation to the slopes versus initial concentrations relationship via 

nonlinear regression. Actual data points and Michaelis-Menten model fitted curves are 

displayed in Figure 2.13 and results are shown in Table 2.23. The observed velocities 

were well described by the Michaelis-Menten model. Vmax values ranged from 2.48 

nmol/min/mg protein (aniline) to 22.83 nmol/min/10
6
 hepatocyte (PAP). Km values 

covered from 187.50 µM (aniline) to 2971 µM (PAP). Aniline has the lowest values of 

Vmax and Km, and is expected to follow nonlinear kinetics at concentration ≥ 1 mM.  
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Table 2.24- Summary for Vmax and Km values predicted from nonlinear regression. 
(Values shown as means of Vmax [nmol/min/mg protein] and Km [µM]) with S.E.) 

Parameter Aniline PCA 2,6-DMA o-TOL PAP* 

Vmax  2.48 ± 0.031 6.19 ± 0.095 3.98 ± 0.049 4.48 ± 0.150 22.83 ± 1.37 

Km  187.5 ± 10.93 901.1 ± 65.43 318.8 ± 18.55 486.3 ± 71.86 2971 ± 304.7 

* Unit for PAP: Vmax: nmol/min/10
6
 hepatocytes; Km: [µM] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimation of Vmax and  Km via MCMC sampling by Bayesian approach 

Nonlinear least square estimates of Km and Vmax for each substance were used as 

initial values for the MCMC sampling in the Bayesian approach to obtain the posterior 

probability of corresponding metabolic parameters. The MCMC simulation using the 

Metropolis-Hastings algorithm was carried out to obtain probability distributions for each 

parameter (Vmax and  Km) that describe the likely values and associated uncertainty. This 

Figure 2.13- Initial metabolic rates versus substrate concentrations. Actual data points 
obtained from linear regression of substrate depletion profiles and Michaelis-Menten 

model fitted curves using non-linear regression are displayed. 
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information was incorporated in a stochastic PBPK model to help evaluate risk. The 

MCMC input requirements include: 

 The kinetic model is Michaelis-Menten. Unknown parameters are Vmax, 

Km, initial substrate concentrations and parameters of variance model 

 Observed data from each depletion profile for each model compound 

 Prior distributions for Vmax and Km are conventional noninformative priors 

 Nonlinear least square estimates of Vmax and Km
 
were used as starting 

points for the Markov chain.  

 Likelihood functions as described below. 

Observed concentrations of model compounds are assumed to be normally 

distributed with mean µ and variance  𝜎𝑖
2: 

yi  ~ N(μ, σi
2)  and  εi ~ N(0, σi

2) 

yi = fi (x, θ) + εi 

E{yi} = μ = fi (x, θ)  ;  Var{yi } = Var{μ + εi } = σi
2 

Where, yi is observed concentration, fi is predicted concentration using Michaelis - 

Menten model and unknown parameters () of Vmax, Km. 

Based on the plots between standard errors of the slopes versus initial substrate 

concentrations (Figure 2.14), the error model was heteroscedastic (multiplicative error 

model), which refers to non-constant error for all observations.  

σi
2 = ωfi

γ
 

Where,  and  are unknown parameters of the variance model which describe a power 

law with an additive offset for the experimental error. The likelihood function of 

observed data from each depletion profile is expressed in equation: 

L(yi|fi ,σi
2) = ∏

1

σi√2π

n

i=1

exp (−
(yi − fi )2

2σi
2 ) 
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The MCMC sampler converged after 100,000 iterations. The convergence of 

Markov chain was assessed by the history plot of MCMC chain. The results for aniline 

are shown in Figure 2.15 as an example of MCMC convergence, where the traces of 

MCMC chain over model parameters were essentially random over the sampling chain 

and displayed no apparent trends. 

Figure 2.14- Standard errors of the slopes versus initial substrate 
concentrations. The standard error values were approximately proportional to 

initial substrate concentrations; this suggests that a simple constant error 
model is inappropriate. 
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In the MCMC results, 50,000 initial iterations were discarded and the remaining 

sampler output was used for inference. The Table 2.24 summaries the results of MCMC 

simulations for metabolic parameters for the five model compounds.  

Table 2.25- Metabolic constants of model compounds obtained from fitting Michaelis-
Menten equation to all depletion curves via MCMC sampling. 

(Vmax: nmol/min/mg protein], and Km: [µM]. For PAP, Vmax: nmol/min/10
6
 hepatocytes) 

Substrate Parameter Mean ± S.D 
95% Confidence 
Interval (lower) 

95% Confidence 
Interval (upper) 

Aniline 
V

max
 2.6 ± 0.24 2.14 3.08 

K
m

 195 ± 26.5 147 252 

p-Chloroaniline 
V

max
 5.94 ± 0.48 4.98 6.88 

K
m

 761 ± 105 572 971 

2,6-Dimethylaniline 
V

max
 4.2 ± 0.35 3.54 4.92 

K
m

 347 ± 42.4 270 439 

o-Toluidine 
V

max
 4.2 ± 0.51 2.42 6.4 

K
m

 457 ± 168 209.5 874 

p-Aminophenol 
V

max
 28.6 ± 7.60 13.62 43.22 

K
m

 3064 ± 717 1416 3975 

The estimated maximal velocity and Michaelis constants for aniline were 2.6 

nmol/min/mg protein and 195 µM respectively. Compared to other compounds, aniline 

Figure 2.15- The history plots of MCMC chain for Vmax, Km of aniline 

indicates the convergence by no apparent trends. 
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has the lowest value of Km which corresponds to higher substrate affinity for metabolic 

enzymes. The mean Km and Vmax estimates for p-aminophenol were 3064 µM and 28.61 

nmol/min/10
6
 hepatocytes, respectively. The standard deviations corresponded to 

coefficients of variance ranging from 9% to 36%. From Table 2.24, the apparent in vitro 

intrinsic clearance values (Vmax/Km) for aniline, PCA, 2,6-DMA and o-TOL were found 

to be similar (0.01) which suggested that cytochrome P450 has similar catalytic activity 

towards these four compounds. 

Posterior distributions of enzyme kinetic parameters 

 The posterior distributions were generated for Vmax and Km of each model 

compound to reflect associated uncertainty. The results are displayed in Figure 2.16. The 

pair plots between Vmax and Km parameters reveal that high correlation exists between 

these two paramters. The correlation covariances between Vmax and Km parameters were 

incorporated into PBPK model via MC sampling to investigate model parameter 

uncertainty and variability. 

Model prediction 

The initial metabolic rates of aniline, PCA, 2,6-DMA, o-TOL and PAP were 

predicted as function of concentration using values of Vmax, Km sampled from their 

posterior distributions (Figure 2.17). The range of predicted initial rates covers most of 

the observed values, which demonstrates that the model predictions were consistent with 

the observed data. 

Figures  2.18- 2.26 showing the fit of model with the actual depletion profiles and 

95% confidence interval simulated via the MCMC sampling. 
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Figure 2.16- Vmax and Km posterior distributions and their pair plots for aniline, PCA, 2,6-
DMA, o-TOL and PAP, respectively.  
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Figure 2.17- Distribution of initial metabolic reaction rates of aniline, 
PCA; 2,6-DMA, o-TOL and PAP. Points present initial rates estimated 

from observed depletion profile. The solid and dash curves represent the 
mean, 95% upper bound and 95% lower bound of initial rates predicted by 

MCMC sampling, respectively. 
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Figure 2.19- p-Chloroaniline depletion data from rat liver microsome studies (points) 
and 95% confidence interval of model predicted curves simulated by the MCMC 

sampling using Vmax and Km values obtained from their posterior distributions. 
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Figure 2.20- p-Chloroaniline depletion data from rat liver microsome studies (points) 
and 95% confidence interval of model predicted curves simulated by the MCMC 
sampling using Vmax and Km values obtained from their posterior distributions) - 

continued 
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Figure 2.21- 2,6-Dimethylaniline depletion data from rat liver microsome studies (points) 
and 95% confidence interval of model predicted curves simulated by the MCMC sampling 

using Vmax and Km values obtained from their posterior distributions. 
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Figure 2.22- 2,6-Dimethylaniline depletion data from rat liver microsome studies (points) 
and 95% confidence interval of model predicted curves simulated by the MCMC sampling 

using Vmax and Km values obtained from their posterior distributions - continued 
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Figure 2.23- o-Toluidine depletion data from rat liver microsome studies (points) and 95% 
confidence interval of model predicted curves simulated by the MCMC sampling using 

Vmax and Km values obtained from their posterior distributions. 
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Figure 2.24- o-Toluidine depletion data from rat liver microsome studies (points) and 
95% confidence interval of model predicted curves simulated by the MCMC sampling 

using Vmax and Km values obtained from their posterior distributions – continued. 
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Figure 2.25- p-Aminophenol depletion data from rat liver microsome studies (points) and 
95% confidence interval of model predicted curves simulated by the MCMC sampling using 

Vmax and Km values obtained from their posterior distributions. 
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Figure 2.26- p-Aminophenol depletion data from rat liver microsome studies (points)  and 
95% confidence interval of model predicted curves simulated by the MCMC sampling using 

Vmax and Km values obtained from their posterior distributions – continued. 
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2.3.3. Plasma and microsomal protein binding 

The mean and standard deviation (n=3) for the fraction unbound in microsomes 

and plasma of five model compounds at different concentrations are tabulated in the 

Tables 2.25 – 2.29. The average unbound fractions in microsomes and plasma over all 

concentrations of aniline were 0.90 and 0.67, respectively. For PCA, unbound fractions in 

microsomes and plasma were 0.77 and 0.22, respectively. 2,6-DMA has average of 0.67 

fraction unbound in microsomes and 0.34 fraction unbound in plasma. o-TOL unbound 

fractions in microsomes and plasma were 0.81 and 0.60, respectively. PAP unbound 

fractions in microsomes and plasma were 1.02 and 0.74, respectively. In general, binding 

to microsomal protein is less than plasma protein for these model compounds. 

Table 2.26- Protein unbound fraction of aniline in microsomes and 
plasma measured using ultrafiltration 

Plasma Microsomes 

Concentration 

(µM) 
fup  

(mean ± SD) 

Concentration 

(µM) 
fumic 

(mean ± SD) 

2 0.73 2 0.87 

10 0.68 ± 0.003 50 0.86 ± 0.061 

20 0.69 ± 0.023 100 0.93 ± 0.012 

100 0.70 ± 0.001 500 0.91 ± 0.013 

1000 0.61 ± 0.05 1000 0.91 ± 0.004 

fudevice: 0.94 ± 0.02 

Table 2.27- Protein unbound fraction of p-chloroaniline in 
microsomes and plasma measured using ultrafiltration 

Plasma Microsomes 

Concentration 

(µM) 
fup 

(mean ± SD) 

Concentration 

(µM) 
fumic 

(mean ± SD) 

2 0.21 ± 0.03 10 0.80 ± 0.01 

10 0.26 ± 0.02 100 0.73 ± 0.02 

100 0.21 ± 0.01 1000 0.66 ± 0.06 

1000 0.23 ± 0.03 2000 0.88 ± 0.02 

2000 0.25 ± 0.03 

  fudevice: 0.97 ± 0.06 
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Table 2.28- Protein unbound fraction of 2,6-dimethylaniline in 
microsomes and plasma measured using ultrafiltration 

Plasma Microsomes 

Concentration 

(µM) 
fup 

(mean ± SD) 

Concentration 

(µM) 
fumic 

(mean ± SD) 

20 0.36 ± 0.02 20 0.66 ± 0.03 

100 0.34 ± 0.04 100 0.68 ± 0.04 

1000 0.30 ± 0.06 1000 0.68 ± 0.05 

fudevice: 0.87 ± 0.02 

 

Table 2.29- Protein fraction unbound of o-toluidine in microsomes 
and plasma measured using ultrafiltration 

Plasma Microsomes 

Concentration 

(µM) 

fup 
(mean ± SD) 

Concentration 

(µM) 

fumic 
(mean ± SD) 

20 0.69 ± 0.04 20 0.90 ± 0.01 

50 0.61 ± 0.05 200 0.79 ± 0.06 

1000 0.51 ± 0.01 500 0.78 ± 0.03 

  

1000 0.69 ± 0.05 

fudevice: 0.89 ± 0.02 

 

Table 2.30-Protein unbound fraction of p-aminophenol in 
microsomes and plasma measured using ultrafiltration 

Plasma Microsomes 

Concentration 

(µM) 

fup  

(mean ± SD) 

Concentration 

(µM) 

fumic 

(mean ± SD) 

10 0.81 ± 0.4 50 1.03 ± 0.26 

20 0.71 ± 0.03 100 1.02 ± 0.063 

100 0.73 ± 0.11 1000 0.97 ± 0.025 

1000 0.70 ± 0.014 3000 1.08 ± 0.04 

fudevice: 0.95 ± 0.01 
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2.3.4. Effective intestinal permeability 

Correlation of Caco-2 permeation with molecular properties 

The multiple linear regression of the training data set (n = 17) using 14 descriptors 

resulted in a subset model (8 predictors) with the smallest BIC value. Parameter estimates 

were listed in the Table 2.30. High value of adjusted correlation coefficient (R
2
adj

 
= 

0.970) suggests that Caco-2 permeabilities and 8 molecular descriptors are highly 

correlated. The plot of observed logPapp and predicted logPapp shows that the predicted 

and observed values are close and the model selected fits the data set with small 

variability (Figure 2.27).  

Table 2.31- Parameter estimates of the selected 
model for Caco-2 cell permeability prediction 

Variable Estimate Adjusted R
2 

BIC 

Intercept -3.09 

0.97 
-

49.98 

a_acc 1.79 

a_don -0.99 

E_tor -0.055 
E_vdw -0.145 

logP 0.59 

SMR 5.77 

VSA -0.069 

Weight -0.088 

  

 

 

 

 

 
Figure 2.27- Pair plot between predicted apparent 

permeability (logPapp) from model selected and 
experimental values obtained from Hou et al (20). 



www.manaraa.com

106 
 
 

The prediction power of the model was validated by a test set of 5 compounds 

which are ethionamide, acebutolol, guanabenz, epinephrine and lidocaine. The predicted 

and observed Caco-2 permeabilities of the test set were shown in Table 2.31. Besides 

ethionamide, the difference between predicted and observed values is less than 0.5. The 

good predictions for the tested compounds confirm the reliability and reproducibility of 

the selected molecular descriptors and the model based on them. 

 This model was used to predict unknown Caco-2 permeabilities of drug 

degradation products as PBPK model parameters. Molecular descriptors and predicted 

logPapp for the model drug degradants are tabulated in Table 2.32 and 2.33. 

 

Table 2.32- Observed Caco-2 permeabilities from Hou et 
al (20) and predicted values of 5 test compounds using 

model selected.  

Test compound Predicted logPapp Observed log Papp 

ethionamide -2.85 -4.40 

acebutolol -6.04 -5.83 

guanabenz -4.19 -4.50 

epinephrine -5.95 -6.02 

lidocaine -3.75 -4.21 

  

 

Table 2.33- Molecular descriptors for drug degradants obtained from MOE software 

 

 

Compound b_rotR rgyr a_acc a_don E_sol E_tor E_vdw VSA TPSA 

p-chloroaniline 0 2.19 0 1 -6.43 7.54 13.90 142.97 26.02 

2,6-dimethylaniline 0 2.07 0 1 -5.68 -4.53 16.73 169.52 26.02 

o-toluidine 0 1.90 0 1 -7.56 7.44 16.21 144.27 26.02 

p-aminophenol 0 1.99 1 2 -12.79 7.55 14.49 135.47 46.25 

aniline 0 1.75 0 1 -7.69 -7.54 13.22 126.98 26.02 
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Table 2.34- Physical properties from MOE and predicted Caco-2 values using selected 
model for drug degradants 

Compound apol SMR logS logP(o/w) MW 
Predicted 
logPapp 

p-chloroaniline 17.8408 3.5864 -1.84 1.826 127.574 -5.048 

2,6-dimethylaniline 23.8483 3.9808 -0.4905 1.288 123.199 -5.618 

o-toluidine 19.4211 3.5591 -1.2662 1.53 107.156 -4.013 

p-aminophenol 17.1296 3.2519 -0.7438 0.926 109.128 -4.666 

aniline 16.3276 3.0854 -1.1058 1.234 93.129 -4.881 
 

Conversion of apparent Caco-2 permeability to in vivo permeability 

 The apparent Caco-2 permeability from in vitro experiments was converted to in 

vivo permeability using relevant correlation. The in vitro/in vivo permeability correlation 

(Figure 2.28) was reproduced from data of Alsenz’s study using 28 compounds with 

reported in vivo intestinal permeabilities (Peff (10
-4

 cm/s)) determined in healthy human 

subjects and in vitro Caco-2 cell permeabilities (Papp (10
-6

 cm/s)) obtained from 

Alsenz’s laboratory at pH 7.4 (72). Below is summary of the correlation (Table 2.34). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28- Correlation of Caco-2 
permeability and in vivo human 

permeability using data from Alsenz 
(67) 
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Table 2.35- In vitro / in vivo permeability 
correlation 

Coefficient Estimate SE 

Intercept 0.899 0.056 

logPapp 0.707 0.076 

logPeff = 0.899xlogPapp + 0.707 

R
2
 = 0.90 

 

The Caco-2 permeabilities of drug degradants were converted to effective human 

permeabilities using the correlation obtained above (Table 2.35). Using the correlation 

below between human and rat intestinal permeability from Fagerholm et al (73), the in 

vivo permeability in rats were calculated for model compounds: 

Peff, human  = 3.6  Peff, rat + 0.0310
-4

 

 The results were shown in Table 3.35. 

 

Table 2.36-Conversion of in vitro permeabilities to in vivo 
human and rat permeabilities of model degradants using 

correlation below between human and rat intestinal 
permeability from Fagerholm et al (73) 

Compound logPapp logPeff,human logPeff,rat 

Aniline -4.88 -3.68 -4.24 

p-Chloroaniline -5.05 -3.83 -4.40 

2,6-Dimethylaniline -5.62 -4.35 -4.94 

o-Toluidine -4.01 -2.90 -3.46 

p-Aminophenol -4.67 -3.49 -4.05 
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2.4. Discussion 

2.4.1. Tissue to plasma partition coefficients  

 The mechanistic Kpu equation (Eq. 2.7) has been used to predict tissue to plasma 

partition coefficients of selected drug degradants for both rats and humans. These 

coefficients were used in conjunction with species-specific plasma and tissue volumes to 

determine unbound volume of distribution at steady state (Vdu,ss) by Equation 2.10. 

Traditionally, Vss is mainly determined as the product of clearance (Dose/AUCplasma) and 

mean residence time (MRT) in the body. Vss can be estimated by using plasma 

concentration- time profiles obtained after a single intravenous dose in laboratory animals 

and human. Due to the potential toxicity of model drug degradants, there are limited 

disposition data available in humans. Therefore, the prediction accuracy of the 

mechanistic Kpu model for degradation compounds was assessed by comparing the 

predicted values of Vdu,ss with the in vivo Vdu,ss of parent or similar-structure compounds. 

Acetaminophen, parent drug of PAP, has experimental rat and human Vdu,ss
 
in the range 

of 0.61 – 0.91 L/kg and 0.85 – 1.42 L/kg, respectively (64). Lidocaine and prilocaine are 

the parent drugs of 2,6-DMA and o-TOL. The in vivo human Vdu,ss for lidocaine and 

prilocaine are 2.96 L/kg and 6.09 L/kg, respectively (38). Aromatic amines with similar 

structure, such as procainamide and clonidine have human Vdu,ss
 
values of 2.27 L/kg (38) 

and 2.63 L/kg (74). Overall, the predicted values of Vdu,ss
 
of model drug degradants were 

in the range of values published in literature for the parent compounds. The predicted 

Vdu,ss for o-TOL differ from its parent value by a factor of 5. This result may be due to 

the change of aromatic amine pKa from parent to degradant. Prilocaine is a relatively 

strong base (pKa of 7.9) than o-TOL (pKa of 4.45). Thus, tissue to plasma partition 

coefficients of model compounds were reasonably predicted with tissue-composition 

based equations. The uncertainty associated with tissue composition data, as well as 

compound specific parameter such as lipophilicity and ionization constant, which were 
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obtained from various literature resources were evaluated in subsequent PBPK model 

development. 

2.4.2. Metabolic rate constants 

 The primary kinetic parameters Vmax and Km for the model compounds were 

determined for PBPK model parameterization using substrate depletion method. The 

Michaelis-Menten equation was fitted to all substrate disappearance profiles by means of 

Markov Chain Monte Carlo simulations. The objective of this experimental study was to 

estimate overall enzyme kinetics, thus the substrate depletion rate are more useful than 

metabolite appearance rate measurement to obtain metabolic parameters. The estimated 

parameters for aniline were compared with available values in literature. McCarthy et al. 

(75) conducted microsomal enzyme assays from Fischer 344 rats and reported the kinetic 

parameters for aniline, Vmax of 0.82 nmol/min/mg protein and Km of 1.47 mM for p-

hydroxylation pathway. For N-hydroxylation pathway, Vmax was estimated to be 0.46 

nmol/min/mg protein and Km was estimated to be 4.12 mM. The discrepancy between the 

values obtained from our study and McCarthy (75) or other resources (76, 77) can be 

explained by the difference in experimental conditions. For example, microsomes in our 

study were obtained from different strain rat (Sprague-Dawley), concentration of 

microsomes used in McCarthy study was higher (1.25 mg protein/ml). Bidlack and 

coworker (78) investigated the effect of acetone on the p-hydroxylation of aniline using 

microsomes prepared from Sprague-Dawley rats. The kinetic values of Vmax and Km were 

determined by measuring the formation of metabolite p-aminophenol and reported as 1.8 

nmol/min/mg protein and 140 µM, respectively. Our estimated parameters differ from 

these corresponding values by a factor of 1.4, however, the ratio of Vmax/Km is similar 

between those two. 

 One of the benefits of using MCMC method to obtain Bayesian inference is to 

update prior information from observed data. Due to the limited available resources of 
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metabolism study for our model compounds, the non-informative prior was used. When 

the data are more informative than the prior distribution, the posterior distribution is 

almost entirely determined by the likelihood, and the prior distribution produces little 

influence. Therefore, the results of parameters estimated from nonlinear regression are 

close to the estimates obtained from MCMC sampling. If substantial prior information 

exists, the Bayesian inference for enzyme kinetic parameters could be more robust.  

2.4.3. Microsomal and plasma protein binding 

 Plasma and microsomal protein unbound fractions of model compounds were 

determined using ultrafiltration method. The values obtained were compared with 

literature. Protein plasma unbound of aniline was reported to be 0.75 (63) and 0.63 (79), 

which are in good agreement with our finding of 0.67. Similarly, acetaminophen (parent 

drug of p-aminophenol) was reported to have plasma protein unbound fraction of 0.88 

(64), whereas fup of p-aminophenol is 0.74 based on our measurements. Lidocaine 

(parent drug of 2,6-dimethylaniline) was estimated to have a plasma protein unbound of 

0.38 in rat and 0.35 in human (40); and its degradant mean fup value of 0.34 in our study.  

 The results suggest that ultrafiltration technique provided reliable measurements 

of protein binding for model compounds. One of the limitations of ultrafiltration method 

is the nonspecific binding of substrates to the filter membrane (80). However, the extent 

of non-specific binding to ultrafiltration units for the model compounds was relatively 

low (less than 10%). Besides, the selected substrates have small molecular weight (MW < 

150), hence, potential molecular sieving effects as reported for drug molecules with high 

molecular weights (81) were not present.  

2.4.4. Intestinal permeability 

 A QSAR model for predicting Caco-2 cell permeability (logPapp) was derived 

from logPapp values measured in Caco-2 cell of 22 aromatic amines in literature. All 

computed descriptor combinations were evaluated to find the one that gave the best 
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predictors based on BIC criteria. From the table of parameter estimates (Table 2.30), 

permeability decreases with increasing van der Waals surface area, high number of 

hydrogen bond donors, or large MW. On the other hand, permeability was positively 

influenced by molar refractivity and high logPo/w. The similar trends in the effect of 

physical properties and molecular descriptors on permeability are described in the model 

of Sherer et al. (82). Solubility did not play a role in the selected model, which is 

reasonable for this group of small compounds of weakly-base substituted-anilines with 

pKa 4 – 5. 

 The predicted values of Caco-2 permeability suggest that 5 model compounds are 

highly permeable. Since Caco-2 permeability has not been made for the model 

compounds, the agreement between predicted and observed values is not be able to 

evaluate. However, for this group of small compounds with reported rapid absorption, the 

model developed for Caco-2 permeability prediction was deemed to be adequate. 

2.5. Conclusion 

All necessary parameters for the selected compounds for the rat and human PBPK 

model were estimated. Physiological parameters (e.g. blood flow, tissue volume and 

composition) for rats and humans were compiled from the literature.  Some of 

biophysical and pharmacokinetic parameters were available in the literature, such as 

lipophilicity (logP), blood to plasma ratio while others required in vitro experimentation 

and in silico prediction based on established procedures. Tissue to plasma partition 

coefficients of model compounds were reasonably predicted with tissue-composition 

based equations from Rodgers and Rowland model. Metabolic parameter distributions 

and their correlation were predicted from MCMC simulations. Microsomal and plasma 

protein unbound fractions of model compounds were determined by ultrafiltration and in 

good agreement with literature data. Effective intestinal permeability was estimated by 
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QSAR model. These obtained model parameters were applied in the systems of PBPK 

differential equations to describe the fate of substrate in the body.  

For human PBPK development, the physiological and anatomical parameters of 

rats will be replaced with those corresponding to adult population. Selected 

pharmacokinetic parameters were interspecies scaled. For example, the metabolic rate 

constant Vmax was adjusted by the amount of protein in human intact liver taken from 

literature. These steps will be described in details in Chapter 3.  
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CHAPTER 3. VELOPMENT OF RAT AND HUMAN PBPK 
MODELS AND PARAMETER SENSITIVITY ANALYSIS 

3.1.Introduction 

The PBPK modeling can be used to predict the exposure of a toxic substance in a 

target tissue. In the previous chapter, the methodology for PBPK model construction was 

described. The ability of a PBPK model to account for uncertainty and population 

variability was also discussed. In this chapter, an oral input model is added to the 

disposition model described in Chapter II and the results for oral exposure are presented. 

Sensitivity and uncertainty analyses were used to evaluate the impact of model input 

parameters on model predictions.  In addition, by incorporating population variability of 

physiological parameters, the overall variability in the concentration time profile was 

estimated. 

3.1.1. Absorption modeling 

Yu and coworkers developed a compartmental absorption and transit (CAT) 

model to simulate the rate and extent of drug absorption for passively transported drugs. 

The gastrointestinal (GI) tract is divided into three segments: stomach, small intestine, 

and colon. The model describes simultaneous transit flow in stomach, small intestine and 

colon, and is used to estimate total absorption in the GI tract. The transit flow in the small 

intestine was described by seven single compartments, which have the same residence 

time but different volumes and flow rates. Drug flows through each segment by linear 

transfer kinetics and is absorbed passively across the small intestinal membrane. 

Absorption from the stomach and colon is assumed to be negligible compared with that 

from the small intestine. The absorption rate constant is proportional to the effective 

permeability. The drug is non-degradable and formulated in an immediate release dosage 

form. The CAT model was used to predict the fraction of dose absorbed for ten 

compounds and compare with their observed values from the literature. The estimated 



www.manaraa.com

124 
 
 

(Eq. 3.2) 

fractions of dose absorbed based on the CAT model were found to provide good 

agreement with observed data.  

Compared to the original CAT model, the advanced CAT (ACAT) model (1) 

incorporates characteristics of drug formulation (dissolution and precipitation), 

permeability and degradation, metabolism and transport in each segment. The rate of 

drug concentration change in each small intestinal compartment is described by a set of 

differential equations, including release of drug from formulation, dissolution of drug 

particles, transit of drug into and out of a compartment, luminal degradation of the drug, 

and absorption of the drug into the systemic circulation. For example, in the i
th

 segment (i 

= 1…8), differential equations used to describe the rate of change of dissolved drug 

concentration are the following: 

dCdissolved
i

dt
=

1

Vi
(ktMdissolve

i−1 − ktMdissolve
i + kdCundissolved

i (Si − Cdissolved
i )Vi −

dCabsorbed
i

dt
−

dCdegraded
i

dt
) 

Drug absorption:    
dCabsorbed

i

dt
=  ka

i Mdissolve
i  

Drug degradation: 
dCdegraded

i

dt
= kdeg

i Mdissolve
i  

 M
i
dissolved, C

i
dissolved, C

i
undissolved are the lumen dissolved amount, dissolved and 

undissolved concentration of drug for the i
th

 compartment, respectively. Vi is volume of 

luminal compartment i
th

; kt is the rate constant of the small intestine transit; kd, ka, kdeg 

are the drug dissolution, absorption and degradation rate constants, and Si is aqueous drug 

solubility. 

The ACAT model consists of 9 compartments including stomach, 7 segments of 

small intestine and colon and a series of enterocyte compartments corresponding to each 

luminal compartment. Drug is absorbed from the GI tract, through the apical membrane 

(Eq. 3.1) 

 

(Eq. 3.3) 
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of the enterocyte. Inside the enterocyte, the drug may across the basolateral membrane 

into the blood stream.  

3.1.2. Source of model parameter uncertainty and human variability 

In population based-risk assessment, one of the challenges is to address the 

uncertainty and the variability associated with model parameters. For example, inter-

individual differences in biotransformation among human populations with diverse 

genetics and lifestyles can result in considerable variability in the metabolism of 

xenobiotics, and hence significantly impact its ADME. The overall inter-individual 

variability in exposure profiles can be simulated by incorporating variability associated 

with key PBPK parameters (2). In order to identify which parameters are key in tissue 

dosimetry, sensitivity analysis can be used.  

Absorption 

The physiological characteristics of the GI tract and the physicochemical 

characteristics of the administered compound can affect bioavailability. For example, the 

surface area of the GI tract, blood flow rate, gastrointestinal pH, intestinal transit time 

and gastric emptying rate can markedly influence the rate of absorption (3). The size and 

distribution of the villi and folds vary from one segment of the GI tract resulting in 

absorption surface differences. The surface area of the small intestine decreases sharply 

from proximal to distal intestine, thus the proximal part of the small intestine has the 

greatest capacity for absorption of most drugs (4). In addition, the longer the time a 

compound is in contact with an area of a particular segment surface, the more extensive 

the absorption process in that segment. The regional pH in the GI tract can alter drug 

solubility and hence the dissolution of solid dosage forms. Gastrointestinal pH may also 

affect drug permeability by influencing the ratio of ionized and non-ionized moieties of a 

substance (5). The intestinal mucosa also can influence the rate and amount of absorption 

due to metabolic activities. According to Levine (3), for drugs given in small doses or for 
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those slowly absorbed or slowly released from pharmaceutical preparations, the effect of 

intestinal biotransformation may be of major significance. For drugs that are subjected to 

active transport via membrane, the expression of various transporters in the membranes 

of intestinal epithelial cells can markedly affect the intestinal absorption of drugs 

administered orally (5). In addition to the effect of these physiological properties, drug 

absorption also depends on the physicochemical properties of the administered 

compound.  

Distribution 

The distribution of a substance throughout the body is influenced by physiological 

properties of the species as well as physicochemical and biochemical properties of the 

substance. The rate of drug distribution can be perfusion-rate limited or permeation-rate 

limited, in which blood flow or membrane is controlling factor. The extent to which a 

chemical distributes throughout the body is typically described as the volume of 

distribution (Vd) or volume of distribution at steady state (Vdss). The binding of a drug to 

plasma and tissue proteins contributes to the apparent distribution volume of drug. Drugs 

with low tissue-to-plasma partition coefficients may have high plasma concentration, and 

vice versus. The partitioning of drugs between plasma and tissue is governed by various 

physiological properties including body composition (tissue and organ volume/weight), 

tissue composition, blood flow, hematocrit, concentrations of plasma binding proteins, 

expressed levels of transporters and fluid pH (5, 6). Volumes of some tissues differ 

between genders. For example, in women, volume of adipose tissues increases rapidly 

during puberty, after which women maintain body fat levels approximately 2-fold higher 

than men. Body fat increases in women from an average of approximately 33% at age 20 

to approximately 48% on average in women over 70 years of age (6). Brown and 

coworker (7) reported values for the volume (or weight) fraction of organs and tissues for 

mice, rats, dogs, and humans, as well as the standard deviation associated with these 
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mean values. The ICRP report (8) also provided the human reference values of tissues 

and organs and their ranges due to differences in age, gender, race or other factors. This 

report presents detailed information on age- and gender-related differences in the 

anatomical and physiological characteristics of reference individuals. Tissue composition 

is used in PBPK modelling to predict tissue-to-plasma partition coefficients (9, 10). 

However, the available resources in literature are not sufficient to evaluate inter-

individual variability associated with those data. Drug properties determining the 

distribution behavior of a drug include its ionization, permeability, bind to plasma 

proteins, partition into red blood cells and its affinity to influx or efflux transporter 

proteins (5). 

Metabolism 

Although drug metabolism can take place in many organs (e.g. gut, liver, lung, 

blood), the major site of metabolism for most drugs is the liver. The physiologic variables 

that can influence drug hepatic clearance include hepatic blood flow, protein binding in 

plasma and intrinsic hepatocellular activity. For drugs with high extraction ratio, the 

hepatic clearance is perfusion-rate limited and more sensitive to blood flow than changes 

in binding or cellular processes. On the other hand, the metabolic clearance of low 

extraction ratio drugs is affected by variation in blood or plasma binding and/or changes 

in cellular eliminating processes. The intrinsic clearance of drug, concentration of 

microsomal proteins, number of hepatocytes and unbound fraction in blood and 

microsomes are the key parameters causing inter-individual variability in drug 

metabolism. In addition to hepatic clearance, metabolic enzymes also express in the gut 

with lower levels than those for the liver, causing the drug first-pass metabolism in the 

enterocytes (11). Gut intrinsic clearance, drug permeability through the enterocyte 

membrane, and blood flow are significant parameters associated with elimination 

variation. 
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Excretion 

The major site of drug excretion is the kidney. The net renal drug excretion is the 

result of three processes – glomerular filtration, tubular secretion and tubular 

reabsorption. The primary determinants of renal excretion include renal blood flow, 

plasma protein binding, urine flow, urine pH, and activity of renal transporters (5). 

3.2.Methods 

3.2.1. Construct PBPK model in rats  

PBPK modeling involves in the development of mathematical descriptions of the 

uptake and disposition of drugs in an integrated and biologically plausible manner. 

Constructing a PBPK model consists of several steps, including: (1) defining structure of 

a PBPK model and representing the model in mathematical terms; (2) obtaining model 

parameter values; (3) solving differential equations and performing simulations; (4) 

evaluating and refining the model.  

Defining model structure 

The structure of PBPK model in rats was determined according to the exposure 

conditions, the pharmacokinetic characteristics and toxicology studies of model 

compounds. It consists of two major sub-models which describe disposition input. 

Disposition model: In the disposition model, the relevant organs or tissues were 

selected.  Since aniline and similarly structural compounds (PCA, 2,6-DMA, o-TOL and 

PAP) are lipophilic and mainly metabolized in the liver, compartments representing the 

adipose and liver are included in the model structure. To account for the target organ of 

toxicity, compartments for the spleen and kidney were also included. Skin, muscle and 

bone expected to contribute significantly to mass balance of substrate are also 

incorporated. A disposition model in rats was constructed representing 14 compartments, 

including those for lungs, adipose, heart, brain, muscle, spleen, pancreas, stomach, gut, 
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kidney, bone, skin and thymus and 2 blood compartments (arterial and venous blood). 

The anatomical arrangement and interconnection of tissues was based on circulatory 

blood flow as illustrated in Figure 3.1. Model compounds were reported to be rapidly 

absorbed and passively permeate tissue and cellular membranes with no known 

transporter. Therefore, each tissue was assumed to be perfusion-rate limited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input model: The input unit of the rat PBPK model was based on the advance 

compartmental absorption and transit model (ACAT) that originally developed by Yu et 

al. (1, 12). It consisted of 9 compartments, including stomach, large intestine, 7 segments 

of small intestine and corresponding enterocyte or GI wall compartments. The input 

Figure 3.1- Conceptual representation of a Whole Body 

PBPK Model. Blood flow rates associated with the 14 
compartments are represented by Q. Elimination is 

depicted as occurring only from liver. 
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model assumed that absorption from the stomach is insignificant compared with that from 

the small intestine; transport across the small intestinal membrane is passive, and the 

absorption rate is proportional to effective permeability. Although pH-dependent 

solubility is included in the ACAT, it played no role in the absorption of the model 

weakly base compounds with pKa ≥ 4.0. The model is based on fasted state physiological 

parameters. The diagram of ACAT model can be described in Figure 3.2. 

 

 

 

 

 

 

 

 

Mathematical representation: The PBPK model is a system of ordinary 

differential equations (ODEs) that are integrated for a specified amount of time according 

to study of Harrison et al. The system of ordinary differential equations derived from a 

perfusion-limited assumption for tissue uptake is given in Appendix A and B.  

Model parameters 

The estimation of model parameters is described in Chapter 2. These include 

physiological parameters AND compound physicochemical and biochemical parameters, 

which obtained from literature, in silico calculation or by in vitro experimentation.  

In vitro to in vivo extrapolation of metabolic parameters: The enzyme metabolic 

parameters determined from in vitro experiments were scaled to in vivo using the 

equations 3.4 and 3.5 as below: 

Vmax, in vivo (mmol/hr) = Vmax, in vitro × MPPGL × WLiver        (Eq. 3.4)  

Dissolved Drug 

..

. 
    

   
..
. 

Stomach Small Intestine  Large Intestine 

   

Excretion 

Undissolved Drug 

Absorption 

Blood Supply 
To Portal Vein 

GI Wall 
 

 GI 

Lumen 

Figure 3.2- The schematic diagram of the gastrointestinal input model 
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Km, in vivo (mM) = Km,in vitro × fumic                               (Eq. 3.5) 

 For PAP, the maximal velocity in vivo was determined by using Equation 3.6 

Vmax, in vivo(mmol/hr) = Vmax, in vitro × HPGL × WLiver             (Eq. 3.6)           E.q. 3  

Vmax, in vitro (mmol/hr/mg protein or mmol/hr/# cells) and Km, in vitro (mM) are 

metabolic parameters determined from in vitro experiment using rat liver microsomes or 

hepatocytes. The units for MPPGL and HPGL are mg protein per gram liver and number 

of hepatocytes per gram liver. Table 3.1 summarizes literature values for microsomal 

protein recovery, and cell number which were used for in vitro to in vivo extrapolation of 

metabolic parameters from microsomal and hepatocytes studies, respectively. 

Table 3.1- Physiological parameters for scaling in vitro drug metabolism data 

Physiological parameters 
Parameter value 

Rat
1,2 

Human
3 

Microsomal protein yield (MPPGL) (mg 

protein/g liver) 
45 32 

Hepatocyte number (HPGL) (cells/g liver) 120x10
6
 99x10

6 

1 
Value of microsomal protein in rats taken from Houston et al (16) as literature average 

2 
Value of hepatocyte number taken from Pang et al. (17)

 

3 
Value from Barter and coworkers (18) 

 Accounting for acetylation pathway of metabolism: Aniline was reported to be 

metabolized in liver by acetylation and hydroxylation pathways (13). The microsomal 

metabolic system does not include Phase 2 enzymes, such as N-acetyltransferase (NAT) 

to metabolize aniline. Therefore, the overall clearance of aniline and other model 

compounds were adjusted to account for acetylation pathway using literature data. 

Grossman et al. (14) studied the relative contribution of the two pathways of aniline 

metabolism by measuring the overall formation of hydroxyacetanilide. Acetylation was 

found to contribute route contributes to 60%, and para-hydroxylation with subsequent 

acetylation of the p-aminophenol contributed 40% to the clearance of a hemotoxic dose 

of aniline. Using this information, the measured metabolic rate from liver microsomes 
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(which only account for hydroxylation pathway) was multiplied by a factor of 2.5 to 

estimate the overall aniline clearance. 

Solving differential equations and performing simulations 

The model implementation was written in R and the deSolve and FME packages 

were used to solve the ODEs. 

Evaluating the model 

 The PBPK model in rats was evaluated for its usefulness by comparing the 

predicted concentration time profile of aniline after oral dose simulation with the 

experimental data from Harrison et al.(15). Because only aniline animal PK data 

available, exposure profile of aniline at different doses were simulated to evaluate the 

model. 

3.2.2. Extrapolation from rat to human PBPK model 

The scale up to human model was accomplished by adjusting the physiological 

parameters to human levels for healthy adult population. In particular, body weight (BW) 

was set at 70 kg for male individuals and 60 kg for females. Other physiological 

parameters, such as tissue volumes and blood flows were adjusted for males and females 

using corresponding reference values represented in Chapter 2. Tissue to plasma partition 

coefficients, protein fraction unbound, blood to plasma ratio and effective permeability 

were assumed to be identical to those parameters in rat model, regardless of gender. 

Metabolic parameters were scaled from in vitro measurements using scaling factors for 

human population. 

3.2.3. Characterization of model parameter uncertainty and variability 

The uncertainty and variability of rat and human PBPK model parameters were 

characterized using the sensitivity analysis. The physiological parameters chosen to 

investigate their variability included tissue/organ volumes, blood flows, hematocrit, 

amount of microsomal protein per gram liver (MPPGL) and hepatocyte number (HPGL). 
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The compound – specific parameters investigated were tissue (adipose, liver and muscle) 

to plasma partition coefficients,  metabolic parameters, unbound fraction, logP, pKa, and 

effective permeability. The coefficients of variation (CV) were determined from 

experimental data or estimated from data in literature.  

3.2.4. Prediction of population pharmacokinetic variability and global sensitivity 

analysis  

The impact of the uncertainties and variability in parameter values on model 

predictions were analysis by using the Monte Carlo method. Primary parameter values 

were randomly drawn from their normal distributions by 10,000 sampling points for each 

parameter. Parameter distributions were defined as normal distributions with the means, 

variances calculated from the CV values. Parameter values were bounded below and 

above 2 to 3 standard deviations. The correlation between Vmax and Km was incorporated 

in Monte Carlo sampling for model prediction. The model was simulated at each of 

parameter combination. This process is repeated many times until the probability 

distribution for the desired model output (e.g. concentration profiles and AUC at target 

tissue) was generated. Global sensitivity analysis was also conducted to identify which 

model parameters most strongly affected model output variability. 

3.3.Results 

3.3.1. Predicted exposure of model compounds in rats  

Simulation of blood concentrations 

Blood time-concentration profiles of five model compounds were predicted for an 

oral solution dose using the rat PBPK model. Different doses of aniline were simulated 

and compared with data reported by Harrison and Jollow (15) to evaluate the usefulness 

of the rat model. The model prediction of aniline after a 0.15 mmol/kg oral dose is 

presented in Figure 3.3. The mean values of measured blood concentrations of aniline 

after intraperitoneal (i.p.) administration of 0.15 mmol/kg aniline in saline were 
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compared to model simulations. Based on reported rapid absorption and high percent 

absorbed of aniline (19), the exposures after oral and intraperitoneal doses are expected to 

be comparable. The shape and magnitude of predicted blood concentration-time course 

are in agreement with observed data. Due to its rapid absorption, peak concentration of 

aniline after i.p. administration to the rat was not measured. However, according to 

Harrison et al., peak levels of aniline metabolites, such as phenylhydroxylamine and 

nitrozobenzene, were achieved within 10 minutes after aniline administration. These 

observations suggest that the tmax of aniline is less than 10 minutes. Similarly, the model-

estimated tmax was 4 minutes. The model accurately simulated the rapid elimination of 

aniline from the blood at this dose. Aniline elimination after low doses was reported to 

approximate first order kinetics with a half-life of approximately 16 minutes at the 0.15 

mmol/kg dose level (15). The model predicted the half-life of aniline after 0.15 mmol/kg 

p.o. dose is 13.4 minutes, which is consistent with the observed data. The area under the 

curve and volume of distribution at steady state were predicted to be 8.01 (mg*hr/L) and 

0.14 L, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3- Model predictions and time course data of blood 
concentration of aniline after an oral dose of 0.15 mmol/kg. 
Continuous line represents the predictions of the rat PBPK 

model. Points represent the mean values after an i.p. dose 
(0.15 mmol/kg) of aniline in rats (n = 4). 
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Similarly, blood concentration-time profiles of aniline after a 0.375 mmol/kg i.p. 

dose were predicted. Figure 3.4 depicts model simulations compared to the average blood 

concentration of aniline after a dose of 0.375 mmol/kg i.p. Simulation of blood 

concentrations following p.o. exposures by the present model resulted in good agreement 

with the reported data.  

 

 

 

 

 

 

 

 

 

 

 

As the i.p. dose was increased, the observed kinetics of aniline elimination appear 

to be more complicated than at lower doses. The plasma time courses of aniline at the 

higher doses (0.75 – 2.25 mmol/kg) were predicted by the model with apparent capacity-

limited phase of clearance occurring between 1 and 6 hours after aniline administration 

(Figure 3.5).  

Simulation of target tissue exposure in rats:  

 In contrast to traditional PK, PBPK modeling allows the prediction of the 

disposition profiles at individual tissue or organs of interest. For the group of model drug 

degradation products, target organ was selected as spleen, for aniline, PCA, DMA and o-

TOL. The target organ was the kidney for PAP. The concentration time courses in target 

Figure 3.4- Model predictions and time course data of 
blood concentration of aniline after an oral dose of 0.375 

mmol/kg. Continuous line represents the predictions of the 
rat PBPK model. Points represent the mean values after an 

i.p. dose (0.375 mmol/kg) of aniline in rats (n = 4). 
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tissues were simulated for these compounds after oral administration of 0.15 mmol/kg 

doses (Figure 3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5- Model predictions and time course data of blood concentration of aniline 
after an oral dose of 0.75 mmol/kg (A), 1.5 mmol/kg (B) and 2.25 mmol/kg (C), 
respectively. Continuous line represents the predictions of the rat PBPK model. 

Points represent the mean values after i.p. doses of aniline in rats (n = 4). 
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Figure 3.6- The rat PBPK simulations of spleen tissue exposure profiles for aniline, 
PCA, DMA, o-TOL and kidney exposure profile for PAP after oral dose of 0.15 

mmol/kg 
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3.3.2. Predicted target tissue dispositions of model compounds in humans  

After adjusting the parameters from rats to humans, the PBPK model was used to 

simulate the target tissue exposure for model compounds in males (Figure 3.7) and 

females (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7- The human PBPK simulations of spleen tissue exposure profiles for aniline, 
PCA, DMA, o-TOL and kidney exposure profile for PAP after oral dose of 0.15 

mmol/kg in males 
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Figure 3.8- The human PBPK simulations of spleen tissue exposure profiles for 
aniline, PCA, DMA, o-TOL and kidney exposure profile for PAP after oral dose 

of 0.15 mmol/kg in females 
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3.3.3. Characterization of primary parameter variation 

In order to investigate the effect of  parameter variation on model output and to 

simulate inter-individual variability, coefficients of variation (CV) of primary parameter 

values were estimated from experimental data or from literature resources or when no 

information was available, a large CV value was used as described below.  

Coefficients of variation determined from experimental data 

The uncertainty of measured parameters (e.g. metabolic constants, unbound 

fraction in plasma and microsomes) was obtained from the standard deviation of the 

reported mean values (Table 3.2). 

Table 3.2- Coefficients of variation of measured parameters 

Parameter 
% CV 

Aniline PCA 2,6-DMA o-TOL PAP 

Vmax 9.2 8.1 8.3 12.1 26.6 

Km 13.6 13.8 12.2 36.8 34.7 

fup 3.3 4.8 5.6 8.2 15.1 

fumic 7.1 9.1 4.5 7.2 5.9 

Coefficients of variation estimated from published data 

The CV values of organ weights and blood flows in rats and humans were calculated 

from standard deviations and mean values reported in Table 2.1 of Chapter 2 (Table 3.3). 

The CV of the physicochemical parameters such as pKa, logPo/w; human effective 

permeability, hematocrit, amount of microsomal protein per gram liver (MPPGL) and 

hepatocyte number (HPGL) were estimated from available literature (Table 3.4).   
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Table 3.3- Coefficients of variation of physiological parameters 
in rats and humans 

Organ 

% CV 

Rat Human 

Organ weight Blood Flow 
Organ weight / 

Blood Flow 

Adipose  3 19 30
a
 

Bone 4 9 30
a
 

Brain 25 15 30
a
 

Stomach 13 28 29 

Gut 17 15 20 

Heart 12 2 19 

Kidneys 15 13 25 

Liver 18 30
a 

23 

Lungs 18 19 30a 

Muscle 18 10 30a 

Pancreas 22 63 29 

Skin 14 11 30 

Spleen 25 60 57 

Thyroid 40 30a 50 

Artery 30a 30a 30a 

Vein 30a 30a 30a 
a
 When data was not available, a value of 30 was used to 

represent moderate level of variation based on reference of 
Clewell et al. (21). Coefficients of variation for human organ 
weights and blood flows were assumed to be identical. 

 

Table 3.4- Coefficients of variation of physicochemical and other 
selected parameters 

Parameter % CV Reference 

pKa 0.4 Pankratov et al. (22) 

logP 0.6 De Bruijn et al. (23) 

Human effective permeability 80 Winiwarter et al. (24) 

Hematocrit 3 Thirup et al. (25) 

MPPGL 34 Barter et al.(18) 

HPGL 58 Barter et al. (18) 
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Coefficients of variation assumed as reasonable estimates 

 The tissue-to-plasma partition coefficient (Kpu) is a key parameter which 

determines the extent of that compound distribution. The Kpu values were predicted 

using the Rodger and Rowland mechanistic equation and assumed to be the same across 

species. In this model, tissue composition (lipid, water and protein content) and 

compound physicochemical properties were used as inputs for these Kpu predictions. 

Due to the lack of available information for human tissue composition and the reliability 

of the mechanistic equation (20), the CV for Kpu of primary organs (e.g. adipose tissue, 

muscle and liver) was assumed to be 30%. 

3.3.4. Model predictions accounting for parameter uncertainty and population 

variability 

By using the Monte Carlo method, the model predictions for blood concentration-

time profiles of aniline in rats after oral doses of 0.15 mmol/kg (Figure 3.9, A), 0.375 

(Figure 3.9, B), 0.75 (Figure 3.9, C), 1.5 (Figure 3.9,D), and 2.25 mmol/kg (Figure 3.9, 

E)  were obtained. The continuous curve represents the mean concentration time values. 

The dashed lines are the 95% confidence interval of the concentration time after 10,000 

iterations. The model predictions were compared with observed data which are displayed 

as the points on Figure 3.9. 

In addition to the prediction of disposition profile accounting for uncertainty and 

variability, the model output, such as AUC of target organ was predicted as a statistical 

distribution rather than point estimates. Probability distribution for each of the model 

parameters was randomly sampled, and the model was run using the chosen set of 

parameter values. This process was repeated many times until the probability distribution 

for the desired model output was generated. Figure 3.10 illustrates the prediction of AUC 

in kidney rat after oral dose of NOAEL of PAP accounting for model parameter 

variability via MC sampling. 
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A        B 

C        D 

E

 

Figure 3.9- Predicted (curves) and experimental (points) blood 
concentrations of aniline for oral exposure of rats to 0.15 mmol/kg (A), 

0.375 mmol/kg (B), 0.75 mmol/kg (C), 1.5 mmol/kg (D) and 2.25 mmol/kg 
(E) doses. The continuous and dash lines are corresponding to the mean and 
95% confidence interval of concentrations predicted via the MC sampling. 
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3.3.5. Sensitivity analysis of model output to primary parameters  

Monte Carlo method was used to determine the effect on model outcome as a 

function of an appropriate parameter probability density function. Monte Carlo sampling 

was conducted to identify which model parameters most strongly affected model output 

accuracy. All selected parameters were varied together in their corresponding 

distributions. The effect of each parameter variation on model output (AUC of target 

tissue) was estimated via pair plots between AUC and each parameter. The observation of 

a trend between output and specific parameter suggests that the output is sensitive to 

parameter variation. If the pair plot contains randomly scattered points, the weak or no 

correlation exists between model output and the parameter. In other words, the variation 

of parameter does not affect the model output value. Pair plots for AUC in spleen rat 

versus parameter investigated after simulation of 0.375 mmol/kg oral dose are illustrated 

in Figure 3.11. The apparent relationship between the AUC in spleen and Vmax indicates 

that the measured Vmax is the most sensitive parameter on the model output of aniline. 

Other parameters, including physiological parameters such as blood flows, organ 

Figure 3.10- Toxicity target tissue exposure 

profile (AUC for kidney concentration time 
profiles in rat) after oral dose at the 

NOAEL for PAP based on MC sampling of 
model parameter variability 
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volumes, and compound specific parameters, such as logPo/w, permeability, tissue to 

plasma partition coefficients were not as impactful as Vmax due to the lack of a trend with 

the AUC in spleen. Similarly, Vmax is the most important parameter for PCA, DMA, o-

TOL and PAP model output (Figure 3.12). The model outputs for PCA, DMA, o-TOL 

and PAP were not sensitive to other parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11- Global sensitivity; the model output – AUC in spleen as a 
function of the parameter values; parameters were generated according to 

truncated normal distribution. 
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Figure 3.12- Global sensitivity; the model output – AUC in spleen as a 
function of the parameter values; parameters were generated according to 

truncated normal distribution - continued 
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Figure 3.13- Sensitivity analysis of metabolic constants for PCA, DMA, o-TOL 
and PAP on AUC in spleen and kidney, respectively 
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3.4.Discussion 

3.4.1. Simulation of blood concentration time profile in rats 

Internal dose (target tissue exposure) is a relevant indicator of toxicity and risk. 

The use of PBPK modeling facilitates prediction of prediction of toxicant 

pharmacokinetics and target tissue exposure when human data cannot be safely obtained. 

A PBPK model was developed to characterize the disposition of aniline and 4 

other model compounds in rats. In vitro metabolic constants and protein binding were 

measured. Tissue-to-plasma partition coefficients were predicted using the tissue-

composition method. Effective permeability was calculated based on the multiple-linear 

regression between Caco-2 permeability and molecular descriptors. The pharmacokinetic 

study performed in Sprague Dawley rats of Harrison et al. was used to evaluate the 

usefulness of the model (15, 26). For model evaluation, a simple comparison of the 

forward prediction of the model at the initial estimates of the parameters to experimental 

data was conducted. No parameter optimization (i.e. “fitting”) was involved. The model 

appeared to be in reasonable agreement with literature data. At lower aniline dose (0.15 

mmol/kg), the model predictions of blood concentrations closely matched the observed 

data and displayed a linear disposition. When the doses were increased, non-linear 

kinetics predictions were consistent with experimental data. The complexity of 

disposition kinetics in the distribution phase as well as the shape of the blood-level 

profiles was reasonably predicted. 

3.4.2. Global sensitivity analysis  

 Issues of uncertainty and variability are of significant importance to health risk 

assessment. The Monte Carlo simulations were conducted to identify the potential impact 

of model parameters on the variability of model output. When coupled with Monte Carlo 

simulations, the PBPK model provided quantitative characterization of model compound 

pharmacokinetics, accounting for the uncertainty and variability in some key parameters. 
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Metabolic constants were identified as the most important parameters. Other parameters 

including physiological parameters of species, compound physicochemical and 

biochemical properties did not strongly impact the model predictions. This finding seems 

reasonable for this group of small lipophilic compounds. 

3.5.Conclusion 

It is well known that the same administration dose can lead to very different target 

tissue exposures and effects depending on the species, timing, or individual. In addition, 

an internal dose is not necessarily proportional to external dose, which can complicates 

dose-response relationships. PBPK models are able to predict target tissue exposure and 

can therefore explain dose-response relationship complication and improve the risk 

assessment. Overall, after being evaluated, the model developed for group of model drug 

degradation products was considered to be adequate to predict the target tissue exposure 

of those compounds in rats and humans. The global sensitivity analysis using the MC 

method allows for the prediction of population target tissue exposure accounting for the 

uncertainty and variability, which results in improvements in dose-response 

characterization for population risk assessment.  
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CHAPTER 4. PBPK-BASED METHOD FOR SAFETY 
ASSESSMENT OF DRUG DEGRADATION PRODUCTS 

4.1.Introduction 

4.1.1. Use of overlap statistics to assess safety risk 

 Gender wage-earning equality has been a long-standing social issue that has 

inspired useful quantitative stochastic metrics. For example, in order to detect the 

occupational sources of gender wage-earning inequality, Gastwirth (1) proposed a 

probability measure to compare men and women wages with equal labor market skills. 

The wages of women and men were assumed to come from two corresponding earnings 

distributions, F(x) and G(x), respectively. To compare male and female earnings 

distributions, a measure called PROB was developed which is the probability that a 

randomly-selected woman from the wage distribution F(x) earns at least as much as a 

randomly-chosen man from G(x). An example of the visual interpretation of this statistic 

is illustrated in Figure 4.1-A.  In this case, the distribution of female wage-earners does 

not overlap the male wage-earner distribution, and the former is centered at a lower 

median wage, therefore  the computed PROB value is 0% indicating  a 0% probability 

that a randomly-selected woman earns at least as much as a randomly-chosen man. 

Wage-earning gender equality is illustrated in Figure 4.1-B wherein the female and male 

wage-earning distributions are identical and coincident, and the PROB value is 50%.   

Thus the PROB statistic provides a meaningful measure of the position of two 

distributions in stochastic terms.  In the context of safety risk assessment, the PROB 

value provides a quantitative measure of the risk that human exposure to a potential drug 

degradant toxicant at a specific dose will be greater than the exposure level for a rat at the 

critical dose (NOAEL) based on the population pharmacokinetic models for a specific 

degradant. Mathematically, the PROB value can be computed using Equation 4.1 below: 
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PROB =  ∫ [1 − F(x)]
∞

0
∙ g(x)dx      (Eq. 4.1)                          

Where F(x) is the cumulative probability of human exposure following a specific dose 

being x, and g(x) is the probability density of the rat exposure following the NOAEL 

dose being x. 

For the current application, the distributions that need to be compared for safety 

risk assessment are 1) the exposure levels in the target tissues for a specific drug 

degradation product in rats at the critical dose (NOAEL based on toxicity data) and 2) the 

exposure levels in target tissue in humans at a specific dose (see Figure 4.2).  These 

distributions are obtained by simulating the rat and human PBPK models at appropriate 

dose levels and using appropriate levels of critical parameter uncertainty. These two 

distributions are compared by computing the PROB value (the probability that the human 

exposure exceeds the rat exposure).  Then a new human exposure distribution is 

generated by PBPK human model simulation at a slightly higher dose, and the PROB 

value is computed again.  This procedure is iterated over a range of human doses 

resulting in an empirical relationship that describes the increasing PROB value (from 0 to 

100% or 0 to 1, fractionally) as a function of increasing human dose. Then the critical 

human dose is identified by purposefully selecting an appropriate, acceptable level of 

safety risk expressed in terms of the PROB value (i.e. the probability that the human 

exposure exceeds the rat exposure).  For example, if a 1% probability of drug degradation 

product toxicity was tolerable for the potential benefit of a specific drug therapy, then the 

critical human exposure level for that drug degradation product would be the value 

corresponding to a PROB value of 1% (or 0.01, fractionally expressed).  The stability 

specification for that drug product would be based on this critical human exposure level.   
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 In this final chapter, the use of PBPK modeling and the PROB metric for risk 

assessment are illustrated for the selected group of model drug degradation products. And 

the results are compared to the convention methods for estimating critical human 

exposure level using inter-individual and inter-species uncertainty factors. 
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Figure 4.1- Theoretically female (f(x) - red curve) and male 
(g(x) - blue curve) earnings distributions. Samples of men 
and women result in PROB of 0% (A). In ideal situation, 
samples of men and women result in PROB of 50% (B). 

NOAEL in rat 
(Dose-Response Study) 

Rat PBPK 

Model   

Series of doses in 

human 

Human PBPK 
Model   

Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 

MC Sampling 

MC Sampling 

Figure 4.2- Illustration of the use of the overlap statistic, PROB, in drug degradation 

product safety risk assessment.  MC (Monte Carlo) sampling was used to generate 
rat and human target tissue exposure distributions at each dose. 
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4.2.Methods 

4.2.1. Selection of a measure of target tissue exposure  

As suggested by WHO and Clewell et al. (2, 3) for the application of PBPK in 

risk assessment, an appropriate measure of target tissue exposure metric for model 

compounds was selected reflecting the active chemical form of substance, its level, 

duration of exposure, intensity as well as the biological matrix that is consistent with the 

toxicity mechanism of substance.   From Bus et al. (4), aniline and several structurally-

related aromatic amines were observed to produce spleen tumors in rats given high doses 

of compound in 2-year bioassay studies. A critical toxicity mechanism is the specific 

accumulation of the aromatic amine transported to the spleen via erythrocytes, causing a 

series of toxic events which contribute to the development of splenic tumors. Based on 

these findings, the toxicity of aniline and other related compounds (e.g. p-chloroaniline, 

2,6-dimethylaniline and o-toluidine) can be estimated by the area under the concentration 

time curve (AUC) in splenic tissue. Thus, the AUC in spleen of parent compounds 

(aniline, p-chloroaniline, 2,6-dimethylaniline and o-toluidine) was selected as appropriate 

measure of target tissue exposure for use in their risk assessment. The AUC in kidney 

after a single oral dose was chosen as dose metric for p-aminophenol due to its toxic 

effect on the kidney examined in rats (5). 

4.2.2. Prediction of rat exposure distribution at critical dose  

The critical dose of model compounds, (NOAEL or LOAEL) was taken from 

literature and shown in Table 4.1. By varying the key parameters in the rat PBPK model 

(Chapter 3), selected exposure metric distributions at the critical doses were predicted 

accounting for model uncertainty and variability via MC sampling. The PBPK model was 

simulated using 10,000 iterations thereby generating the target tissue AUC probability 

distributions. 



www.manaraa.com

157 
 
 

Table 4.1- The critical doses for model compounds from 
literature 

Compound 
NOAEL 

(mg/kg) 
Reference 

Aniline 10 Jenkin et al.(6)  

p-Chloroaniline 10 Chhabra et al. (7) 

2,6-Dimethylaniline 15
* 

NTP (8) 

o-Toluidine 28 Caroline et al. (9) 

p-Aminophenol 25 Newton (10) 

*
 Lowest observable adverse effect level (LOAEL)  

4.2.3. Calculation of PROB values as function of human dose  

A series of target tissue exposure distributions for humans were generated as a 

function of dose by using human PBPK model, critical parameter uncertainty using 

10,000 iterations at each dose via MC sampling.  The dose range from 0.002 to 0.2 

mmol/kg was selected with 0.002 – 0.05 mmol/kg increment from low dose to next 

higher dose. PROB values were calculated using Eq. 4.2 by comparing the human target 

tissue exposure distributions at each dose to the rat target tissue exposure distribution at 

the NOAEL.  

Linear spline interpolation at low doses was used to calculate the human safe dose 

which corresponded to a PROB value of 1%.  At this value of PROB, there is a 1% 

probability that a human exposure level in the target tissue will exceed the critical rat 

exposure level.  The selection of this value is somewhat arbitrary; clearly a lower (or 

higher) may be arguably more appropriate for a specific drug therapy.  

4.2.4. Comparison of human reference dose calculated from PBPK-based and 

traditional risk assessment approaches  

 The human reference doses were calculated using the conventional risk 

assessment approach. Two uncertainty factors with the arbitrary value of 10 were used to 

account for the animal to human extrapolation and human population variability. Both the 
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number and value of uncertainty factors were arbitrary but typical.  These results were 

compared to human safe doses obtained from the approach of using PBPK model.   

4.3.Results 

4.3.1. Distribution of target tissue exposure in rats at critical dose  

 The probability distribution of AUC in target organ of toxicity at critical dose in 

rats was predicted for each model compound (Figure 4.3) and described in Table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3- Probability distributions of AUC in target organ of toxicity 
at critical doses 
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Table 4.2- Probability distribution of AUC 
in target organ of toxicity at critical dose 

Compound 
AUC (mM*hr) 

Mean SD 

Aniline 0.0427 0.0336 

p-Chloroaniline 0.0666 0.0627 

2,6-Dimethylaniline 0.0553 0.0506 

o-Toluidine 0.1626 0.1200 

p-Aminophenol 0.1017 0.0807 

 

4.3.2. Calculation of PROB values based on comparison between human exposure 

at a specific dose and rat exposure at the critical dose  

 A series of target tissue exposure distributions were generated by simulating the 

PBPK human model at dose ranges selected to cover PROB values approximately from 

0.1 to 100%. The PROB was calculated by comparing each predicted human exposure 

with rat exposure at the critical dose. As an example, figure 4.4 was displayed to illustrate 

the comparison between two exposure distributions between rat at critical dose and 

human at different selected doses. The estimated PROB values for the five model 

compounds were shown in Tables 4.3 – 4.7. Calculated PROB values versus males and 

females population doses are displayed in Figure 4.5 – 4.9. 
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Figure 4.4- Comparison between toxicity target tissue exposure distributions 
for aniline in the rat model at the NOAEL and predicted toxicity target tissue 

exposure distributions in human at different doses. The dashed line represents 
human model simulations and continuous line represents rat simulations. 

Black areas are the overlap region which pictorially represent the PROB value. 

Male dose: 
0.009 mmol/kg 
PROB = 1.17% 

Male dose: 
0.02 mmol/kg 
PROB = 7.3 % 

Male dose: 
0.07 mmol/kg 
PROB = 48% 

Male dose: 
0.2 mmol/kg 
PROB = 86% 
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Table 4.3- The values of PROB for male and 
female populations after single oral dose of 

aniline 

Males Females 

Dose 
(mmol/kg) 

PROB 
(%) 

Dose 
(mmol/kg) 

PROB 
(%) 

0.002 0.08 0.002 0.054 

0.007 0.64 0.005 0.42 

0.009 1.17 0.008 1.30 

0.016 4.62 0.010 1.94 

0.020 7.30 0.015 4.53 

0.040 24.42 0.017 6.09 

0.070 48.38 0.040 25.6 

0.100 62.99 0.070 49.9 

0.150 78.14 0.100 64.8 

0.200 85.91 0.200 86.9 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.5- Plot of PROBs versus human doses of aniline for male (left) and 
female (right) populations.  
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Table 4.4- The values of PROB for male and 
female populations after single oral dose of p-

chloroaniline 

Males Females 

Dose 
(mmol/kg) 

PROB 
(%) 

Dose 
(mmol/kg) 

PROB 
(%) 

0.002 0.17 0.002 0.21 

0.005 0.85 0.004 1.28 

0.01 4.42 0.008 4.58 

0.012 6.24 0.009 5.71 

0.015 9.54 0.01 6.96 

0.02 16.2 0.02 20.9 

0.04 42.0 0.04 45.0 

0.07 64.8 0.06 61.2 

0.1 77.9 0.08 71.7 

0.2 91.3 0.15 87.1 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6- Plot of PROBs versus human doses of PCA for male (left) and female 
(right) populations. 
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Table 4.5- The values of PROB for male and 
female populations after single oral dose of 2,6-

dimethylaniline 

Males Females 

Dose 
(mmol/kg) 

PROB 
(%) 

Dose 
(mmol/kg) 

PROB 
(%) 

0.002 0.001 0.002 0.00001 

0.010 0.65 0.005 0.13 

0.013 1.33 0.008 0.53 

0.02 3.74 0.012 1.33 

0.032 8.04 0.035 9.05 

0.04 11.4 0.07 25.5 

0.06 20.1 0.1 36.7 

0.08 28.5 0.15 53.6 

0.1 36.1 0.2 66.8 

0.2 60.3   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7- Plot of PROBs versus human doses of 2,6-DMA for male (left) and 
female (right) populations.  
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Table 4.6- The values of PROB for male and 
female populations after single oral dose of o-

toluidine 

Males Females 

Dose 
(mmol/kg) 

PROB 
(%) 

Dose 
(mmol/kg) 

PROB 
(%) 

0.005 0.0001 0.005 0.0001 

0.01 0.10 0.01 0.27 

0.02 0.90 0.02 1.17 

0.03 2.71 0.03 3.49 

0.04 5.12 0.04 6.79 

0.05 8.60 0.05 10.2 

0.07 17.4 0.07 21.6 

0.10 32.5 0.1 33.8 

0.15 52.3 0.15 55.0 

0.20 67.4 0.2 69.8 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8- Plot of PROBs versus human doses of o-TOL for male (left) and 
female (right) populations.  
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Table 4.7- The values of PROB for male and 
female populations after single oral dose of p-

aminophenol 

Males Females 

Dose 
(mmol/kg) 

PROB 
(%) 

Dose 
(mmol/kg) 

PROB 
(%) 

0.002 0.59 0.002 0.61 

0.005 0.86 0.005 0.89 

0.007 1.09 0.007 1.12 

0.02 4.37 0.02 4.52 

0.04 11.9 0.04 13.5 

0.05 16.7 0.05 19.0 

0.07 24.5 0.07 27.8 

0.1 37.3 0.1 38.8 

0.15 51.2 0.15 50.4 

0.2 61.9 0.2 64.7 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9- Plot of PROBs versus human doses of PAP for male (left) and female 
(right) populations.  
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4.3.3. Comparison of human reference dose calculated from PBPK-based and 

traditional risk assessment approaches  

The linear interpolation was used to calculate the human safe doses corresponding 

to the dose at a PROB value of 1%. As previously noted this “safe” dose corresponds to 

the human dose at which there is a 1% of probability that a randomly chosen person 

would have greater target tissue exposure than rat exposed to the critical dose. The results 

were shown in Table 4.8. The selection of 1% as the critical PROB value is somewhat 

arbitrary.  The selection could be made based on a deliberate consideration of the 

therapeutic benefit and risk for specific drug therapies.   

The conventional risk assessment approach was used for the model compounds to 

compare with the use of PBPK risk assessment method. Arbitrary (default) uncertainty 

factor with a value of 10 were used to account for interspecies difference between rats 

and humans and inter-individual differences in human population. Due to the absence of 

NOAEL values for 2,6-dimethylaniline, the reported LOAEL was used. The human 

reference doses were calculated as in Table 4.9. The application of PBPK method 

resulted in estimated human safe doses that were larger than those obtained by the 

exemplary application of the conventional method. 

Table 4.8- The human safe doses obtained by 
the application of PBPK in risk assessment 
accounting for uncertainty and variability 

Compound 

Human RfD by PBPK-based 

approach (mg/kg) 

Male Female 

Aniline 0.78 0.65 

p-Chloroaniline 0.66 0.44 

2,6-Dimethylaniline 1.39 1.25 

o-Toluidine 2.20 2.06 

p-Aminophenol 0.68 0.65 
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Table 4.9- Human reference doses of model 
compounds calculated by tradition risk 

assessment approach 

Compound 
NOAEL 
(mg/kg) 

Human 
RfD 

Aniline 10 0.10 

p-Chloroaniline 10 0.10 

2,6-Dimethylaniline 15 0.15 

o-Toluidine 28 0.28 

p-Aminophenol 25 0.25 

  

4.4.Discussion 

Quantitative risk assessment requires the evaluation of two risk components: the 

severity of potential failure and the probability that failure will occur.  For toxicity risk 

related for drug products, the nature of the toxic response will define its severity, but 

typically any contribution of degradation product to the safety risk of a drug product is 

deemed unacceptable.  Thus the quantitative estimation of the probability of failure (i.e. a 

toxic response due to drug degradation exposure) is essential for rational risk assessment 

of the chemical instability of the drug substance (API).  The critical quandary is that the 

pharmacokinetics of drug degradation products (in contrast to the API) are typically 

unknown in animals and not appropriate objects for study in human clinical trials.  Thus 

the use of physiologically-based pharmacokinetic models which attempt to leverage all of 

the available knowledge associated with the physiological, anthropomorphic, 

biochemical, biophysical and physical chemical characteristics of the human or animal 

populations and the xenobiotic (e.g. drug degradant) constitutes a rational approach to 

address this critical issue in drug product risk assessment.    

Estimating the failure probability requires identifying sources of uncertainty and 

assigning those sources a meaningful value to describe their degree of uncertainty.  In the 
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conventional approach, the sources of uncertainty are described in broad categories which 

are assigned arbitrary values.  The estimation of a critical human exposure value is not 

associated with any risk quantitation; it is simply a point value based on animal toxicity 

data and a consideration of the possible sources of uncertainty in applying those data to 

the likely conditions of human exposure.  In the proposed PBPK modeling and simulation 

approach, some of the potential uncertainty sources are evaluated by estimating 

individual PK parameter uncertainty and using MC methods to generate target tissue 

exposure distributions for animal and human populations as a function of xenobiotic 

dose.  The approach provides a rational way to account to inter-individual species-

specific and inter-species sources of uncertainty.   

Moreover, the use of the PROB metric which quantifies the probability that a 

randomly-chosen human exposure at specific dose is greater than rat exposure at the 

critical dose provides a way to identify a critical human dose by considering what 

probability of failure (degradant toxicity) is tolerable for a given drug product.  In other 

word, the benefit-risk decision can be rationally made.  

Our PBPK modelling approach accounted for model uncertainty and population 

variability, the interspecies differences in pharmacokinetics, and inter-individual 

differences. This approach could obviously be expanded to rationally capture other 

potentially important sources of uncertainty.  For example the following expansions 

might be appropriate: 

1. coupling the PBPK models with pharmacodynamics models for drug 

degradation toxic responses, 

2. expanding the PBPK models to include potentially toxic drug degradant 

metabolites, 

3. inclusion of pharmacogenomics sources of variation (e.g. metabolism or 

transport) in human PBPK models, 
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4. coupling of PBPK models with drug product stability and dosage regimen 

models to evaluate time-dependent and therapy-dependent drug degradation 

product exposure kinetics, and 

5. conducting additional animal pharmacokinetic studies to provide greater 

confidence in the global and local structures of the PBPK models. 

4.5.Conclusions 

In our study, the PBPK modeling approach resulted in drug degradation product 

risk specifications that were less stringent than those estimated by conventional risk 

assessment approach. However, the significance of these results should be tempered by 

recognizing that this comparison was only an example.  In estimating the critical human 

values using both approaches, we only considered inter-individual and inter-species 

uncertainty.  And for the PBPK approach, we choose an arbitrary critical risk probability 

value (1%).  Nonetheless the PBPK modeling approach provides a rational basis for drug 

instability risk assessment by focusing on target tissue exposure (i.e. more closely related 

to tissue response); leveraging physiological, anthropomorphic, biochemical, biophysical 

and physical chemical knowledge; and providing a quantitative metric for the probability 

of failure upon which the risk-benefit judgment can be made.  
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APPENDIX A    

Glossary 

C = 

V= 

V
i
Lumen =  

Blood concentration of model compound in each compartment (mM) 

Volume of tissue compartment (L) 

Lumen volume of the i
th 

small intestine compartment (L), calculated as 

function of the small intestine length, the fractional length, the proximal 

radius and the distal radium of the i
th

 segment. 

ks = Gastric emptying rate in fasted GI state constant (1/hr) 

kdissolve = Dissolution constant, calculated using dissolution coefficient, drug 

particle radius, drug particle density and diffusion layer thickness. 

kt = Intestinal transfer constant (1/hr) 

Si =  Solubility of the drug corresponding to the pH in the i
th

 gastrointestinal 

compartment, calculated using the pKa of the compound, employing the 

Henderson-Hasselbach equation. 

k
i
a =  Absorption rate constant in the i

th
 gastrointestinal compartment, 

calculated as function of effective permeability (logPeff), surface area and 

lumen volume of each segment in the gastrointestinal tract. 

KB/P = Blood to plasma ratio 

Kpu = Unbound tissue-to-plasma partition coefficient 

fup = Fraction protein unbound in plasma 

Q = Blood flow rate (L/hr) 

Km = In vivo Michaelis constant (mM) 

Vmax =  In vivo maximal metabolic velocity (mmol/hr) 

fNAT = Scale factor to account for acetylation pathway of metabolism 
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APPENDIX B 

Differential equations of the ACAT model 

Stomach: 

VLumen
Stomach.

dCundissolved
Stomach

dt

= −ks.Cundissolved
Stomach .VLumen

Stomach

− kdissolve .Cundissolved
Stomach (SStomach − Cdissolved

Stomach ). VLumen
Stomach 

VLumen
Stomach.

dCdissolved
Stomach

dt

= −ks.Cdissolved
Stomach . VLumen

Stomach

+ kdissolve .Cundissolved
Stomach (SStomach − Cdissolved

Stomach ). VLumen
Stomach

− ka
Stomach.Cdissolved

Stomach . VLumen
Stomach 

VWall
Stomach.

dCWall
Stomach

dt

= QWall
Stomach.(CArtery −

CWall
Stomach.KB/P

fup .KpuStomach
) + ka

Stomach .Cdissolved
Stomach . VLumen

Stomach 

First segment of small intestine: 

VLumen
SI1

.
dCundissolved

SI1

dt

= ks. Cdissolved
Stomach . VLumen

Stomach − kt. Cundissolved
SI1

.VLumen
SI1

− kdissolve .Cundissolved
SI1

(SSI1 − Cdissolved
SI1

). VLumen
SI1

 

VLumen
SI1

.
dCdissolved

SI1

dt

= ks. Cdissolved
Stomach .VLumen

Stomach − kt.Cdissolved
SI1

. VLumen
SI1

+ kdissolve .Cundissolved
SI1

(SSI1 − Cdissolved
SI1

). VLumen
SI1

− ka
SI1

. Cdissolved
SI1

. VLumen
SI1

 

VWall
SI1

.
dCWall

SI1

dt
= QWall

SI1
. (CArtery −

CWall
SI1

. KB/P

fup .KpuSI1 ) + ka
SI1

. Cdissolved
SI1

.VLumen
SI1
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Other segments of small intestine: 

VLumen
SIi

.
dCundissolved

SIi

dt

= kt.Cundissolved
SIi−1

.VLumen
SIi−1

− kt.Cundissolved
SIi

.VLumen
SIi

− kdissolve . Cundissolved
SIi

(SSIi − Cdissolved
SIi

) . VLumen
SIi

 

VLumen
SIi

.
dCdissolved

SIi

dt

= kt. Cdissolved
SIi−1

.VLumen
SIi−1

− kt. Cdissolved
SIi

.VLumen
SIi

+ kdissolve . Cundissolved
SIi

(SSIi − Cdissolved
SIi

) . VLumen
SIi

− ka
SIi

. Cdissolved
SIi

. VLumen
SIi

 

VWall
SIi

.
dCWall

SIi

dt
= QWall

SIi
. (CArtery −

CWall
SIi

. KB/P

fup .KpuSIi
) + ka

SIi
. Cdissolved

SIi
.VLumen

SIi
 

Where i from 2 to 7. 

Colon: 

VLumen
Colon .

dCundissolved
Colon

dt

= kt. Cundissolved
SI7

.VLumen
SI7

− kt(CO). Cundissolved
Colon . VLumen

Colon

− kdissolve . Cundissolved
Colon (SColon − Cdissolved

Colon ).VLumen
Colon  

VLumen
Colon .

dCdissolved
Colon

dt

= kt. Cdissolved
SI7

.VLumen
SI7

− kt(CO). Cdissolved
Colon .VLumen

Colon

+ kdissolve .Cundissolved
Colon (SColon − Cdissolved

Colon ). VLumen
Colon

− ka
Colon .Cdissolved

Colon . VLumen
Colon  
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VWall
Colon .

dCWall
Colon

dt
= QWall

Colon.(CArtery −
CWall

Colon. KB/P

fup .KpuColon
) + ka

Colon. Cdissolved
Colon .VLumen

Colon  

APPENDIX 3 – Differential equations of the disposition model 

Venous blood: 

VVein .
dCVein

dt
= QVein . (

1

∑ Qtis
∑

Qtis. Ctis. KB/P

fup . Kputis −  CVein) 

Arterial blood: 

VArtery.
dCArtery

dt
= QArtery. (

CLung .KB/P

fup. KpuLung −  CArtery) 

Adipose: 

VAdipose .
dCAdipose

dt
= QAdipose .(CArtery −

CAdipose . KB/P

fup . KpuAdipose
) 

Muscle: 

VMuscle .
dCMuscle

dt
= QMuscle .(CMuscle −

CMuscle .KB/P

fup .KpuMuscle
) 

Skin: 

VSkin .
dCSkin

dt
= QSkin . (CMuscle −

CSkin . KB/P

fup . KpuSkin
) 

Lung: 

VLung.
dCLung

dt
= QLung .(CLung −

CLung .KB/P

fup . KpuLung
) 

Pancreas: 

VPancreas.
dCPancreas

dt
= QPancreas. (CPancreas −

CPancreas. KB/P

fup .KpuPancreas
) 

Spleen: 

VSpleen .
dCSpleen

dt
= QSpleen . (CSpleen −

CSpleen . KB/P

fup .KpuSpleen
) 

Bone: 

VBone.
dCBone

dt
= QBone .(CBone −

CBone. KB/P

fup . KpuBone
) 
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Brain: 

VBrain.
dCBrain

dt
= QBrain. (CBrain −

CBrain .KB/P

fup . KpuBrain
) 

Heart: 

VHeart.
dCHeart

dt
= QHeart. (CHeart −

CHeart. KB/P

fup . KpuHeart
) 

Thymus: 

VThymus.
dCThymus

dt
= QThymus. (CThymus −

CThymus. KB/P

fup . KpuThymus
) 

Liver: 

VLiver.
dCLiver

dt
= QLiver.(CLiver_in −

CLiver. KB/P

fup .Kpu
Liver

) − fNAT.

Vmax .
CLiver

Kpu
Liver

Km +
CLiver

KpuLiver

 

CLiver_in =  
1

QSpleen + QPancreas + QHepatic_Artery + ∑ QWalli
9
i=1

. (
QSpleen . CSpleen . KB/P

fup . KpuSpleen

+
QPancreas.CPancreas. KB/P

fup . KpuPancreas + QHepatic_Artery. CArtery

+ ∑
QWalli . CWalli . KB/P

fup .KpuWalli

9

i=1

) 

Kidney: 

VKidney.
dCKidney

dt
= QKidney. (CArtery −

CKidney. KB/P

fup . KpuKidney
) 
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